
Appendix

AI. PROOF OF PROPOSITIONS

In this section, we present the detailed proofs omitted

from the main manuscript. We begin by introducing some

preliminaries.

A. Preliminaries

We are interested in the matrix Lie group representation g of

the manipulator’s end-effector pose, where g ∈ SE(3), given

by

g =

[
R p
0 1

]
∈ SE(3), (12)

where SE(3) is a Special Euclidean group, R ∈ SO(3) with

SO(3) being a Special Orthogonal group, and p ∈ R
3. We

first define invariance and equivariance.

Definition 1 (SE(3) left invariance and equivariance). Let f
be a function f : X → Y , so that y = f(x), where x ∈ X
is a domain and y ∈ Y is a co-domain. Then, a function f is

left-invariant to SE(3) (left) group action gl ∈ SE(3) if the

following equation holds:

f(gl ◦ x) = f(x), (13)

where ◦ is a group action on the domain or co-domain .

Similarly, a function f is left-equivariant to SE(3) group

action gl if the following holds:

f(gl ◦ x) = gl ◦ f(x). (14)

In fact, the group action is realized by the appropriate

group representation on the acting set, i.e., the domain or co-

domain, which is often denoted by ρ(gl) in group equivariant

deep learning literature [22]. Important examples widely used

throughout the paper include cases where the domain or co-

domain is SE(3) itself or the wrench1
R

6. If the set that the

group acts on is the SE(3) group itself, then,

gl ◦ g = gl · g, ∀g, gl ∈ SE(3), (15)

where · is a standard matrix multiplication. If the set that the

group actions on is the wrench R
6, then,

gl ◦ h = AdTg-1
l
h, ∀gl ∈ SE(3), ∀h ∈ R

6, (16)

where Ad : SE(3)× R
6 → R

6, defined as

Adgl =

[
Rl p̂lRl
0 Rl

]
∈ R

6×6, (17)

with gl = (pl, Rl). For the details of the group action and

representation, we refer to [22].

Lemma 1 (Left invariance of GCEV and elastic wrench [19]).
The GCEV e

G
(2) and elastic wrench f

G
(9) is left-invariant,

1Although the original wrench should be represented in se∗(3), a dual-
space of Lie-algebra, we use a vector representation of se∗(3) to reduce
mathematical details.

i.e., ∀g1, g2, gl ∈ SE(3),

e
G
(gl ◦ (g1, g2)) = e

G
(glg1, glg2) = e

G
(g1, g2),

f
G
(gl ◦ (g1, g2,Kp,KR)) = f

G
(glg1, glg2,Kp,KR)

= f
G
(g1, g2,Kp,KR).

(18)

Proof: Although the full proof is presented in [19], we in-

clude it for completeness. Let gl = (pl, Rl), and gi = (pi, Ri)
with i = {1, 2}. Then, the left-transformed homogeneous

matrix glgi is calculated in the following way:

glgi =

[
Rl pl
0 1

] [
Ri pi
0 1

]
=

[
RlRi Rlpi + pl
0 1

]
,

i.e., glgi = (Rlpi + pl, RlRi) The left-transformed GCEV is

then

e
G
(glg1, glg2) =

[
RT1 R

T
l (Rlp1 + pl −Rlp2 − pl)(

(RlR2)
TRlR1 − (RlR1)

TRlR2

)∨
]

=

[
RT1 (p1 − p2)

(RT2 R1 −RT1 R2)
∨

]
= e

G
(g1, g2), (19)

where the definition of the rotation matrix is used, i.e., RTR =
RRT = I , ∀R ∈ SO(3). Similarly, the left-transformed elastic

wrench reads

f
G
(glg1, glg2,Kp,KR)

=

[
(RlR1)

TRlR2Kp(RlR2)
T (Rlp1 + pl −Rlp2 − pl)

(KR(RlR2)
TRlR1 − (RlR1)

TRlR2KR)
∨

]

=

[
RT1 R2KpR2(p1 − p2)

(KRR
T
2 R1 −RT1 R2KR)

∨

]
= f

G
(g1, g2,Kp,KR). (20)

We note that the gains Kp and KR are defined on the

desired frame [2], i.e., on the body-frame; therefore, they are

not affected by left-group actions (change of spatial coordinate

system).

B. Proof of Proposition 1

The left-transformed observation signals gl◦o(k) reads that:

gl ◦ o(k) = (gl ◦ eG
, gl ◦ Fe, gl ◦ Iw). (21)

As was shown in Lemma 1, the GCEV e
G

is left invariant as

gl ◦ eG
(g, g

EDF
) = e

G
(glg, glgEDF

) = e
G
(g, g

EDF
).

The force-torque sensor values are left-invariant because they

are already defined with respect to the end-effector frame [19],

and the visual representation vectors satisfy left invariance if

Assumption 1 is ideally met. Combining all these properties,

it follows that

a(k) = πθ(gl ◦ o(k)) = Dψ(gl ◦ eG
, gl ◦ Fe, μφ(gl ◦ Iw))

= Dψ(eG
, Fe, z) = πθ(o(k)), (22)

which shows the left invariance of the G-CompACT policy on

the end-effector frame. �

C. Proof of Corollary 1

Notice that the desired pose signal in the spatial frame gd
is obtained via (with a slight abuse of notation)

gd = ggrel = g · πθ(o(k)) � πsθ(o(k)), (23)



where the superscript s denotes that the policy is described

on the spatial frame, i.e., the world frame. Then, utilizing the

left-invariance property from Proposition 1, it follows that

(glgd,Kp,KR) = πsθ(gl ◦ o(k))
= glg · π(gl ◦ o(k)) = glg · π(o(k)).

(24)

Therefore, when the policy is left-transformed by an arbitrary

element gl ∈ SE(3), the resulting trajectories in the spatial

frame gd are also transformed to glgd, showing the equivari-

ance property. �

D. Proof of Proposition 2

Let the object of interest, e.g., a peg for the picking task and

a hole for the placing task, be observed by Oref and Iw with

its pose given by gref , so that the left-translated gl · gref is

observed by gl ◦Oref from the point cloud, and gl ◦Iw by the

left-translated end-effector attached wrist camera as described

in Fig. 5. First, notice that hΘ can be fully written as

hΘ(g, gref , Fe) = f
G
(g, gd,Kp,KR)

= f
G
(g, πsθ(eG

(g, g
EDF

), Fe, Iw))

= f
G
(g, πsθ(eG

(g, fϕ(Oref )), Fe, Iw))
(25)

Note also that g
EDF

is fed to e
G

, not gref .

Then, when both g and gref undergo a left transformation

gl, from Assumption 1 and Corollary 1, the following holds:

hΘ(glg, glgref , gl ◦ Fe)
= f

G
(glg, π

s
θ(eG

(glg, fϕ(gl ◦ Oref )), gl ◦ Fe, gl ◦ Iw))
= f

G
(glg, π

s
θ(eG

(glg, glgEDF
), gl ◦ Fe, gl ◦ Iw)) (26)

= f
G
(glg, glgd,Kp,KR) = f

G
(g, gd,Kp,KR)

= hΘ(g, gref , Fe).

The second-last equation (SE(3) left-invariance of the elastic

wrench) comes from Lemma 1. Finally, as the hΘ is left-

invariant and is defined on the end-effector frame, from the

result of Proposition 2 of [19], hΘ is equivariant, if it is

described in the spatial frame, i.e.,

hsΘ(glg, glgref , gl ◦ Fe) = AdTg-1
l
hΘ(g, gref , Fe), (27)

where Ad is a (large) adjoint operator. From Definition 1, hsΘ
is an equivariant function [19]. �

AII. IMPLEMENTATION DETAILS

A. G-CompACT Training

1) Details on models: The objective of this chapter is to

highlight the details of the selected models, especially the

vision encoders. Our G-CompACT model has a CLIP-RN50

vision backbone that is modulated by the FiLM layer from

the CLIP text encoder. A few notable hyperparameters are

summarized in the Table A1. As denoted in Fig. 1, we use

30Hz of inference frequency, with the chunking size of 60.

In addition, we used rotation vector (rotvec) representation

for relative pose actions, and 6D rotation (rot6d) represen-

tation for world-pose observation and actions for benchmark

models. This is because the default end-effector configuration

in the world (spatial) frame tends to have a 180◦ rotation

TABLE A1: Hyperparameters of G-CompACT. The other hyperpa-
rameters are adapted from the ACT [37].

Names Values

Image Size [224, 224]
Learning Rate (policy) ηpolicy 1e− 05
Learning Rate (Vision Encoder) ηvision 1e− 05
Epochs 15, 000
Batch Size 32
Batch Size 32

angle, leading to a sign flip when using the rotation vector

representation.

2) Dataset details: To collect the demonstration dataset, the

expert teleoperator monitors the task’s progress, makes real-

time movement commands via a SpaceMouse, and adjusts the

admittance gains using keyboard input to switch between pre-

defined gain modes: low-gain mode, high-gain mode, insertion

mode, and contact mode.

a) Admittance Gains: The gain modes utilized during the

training are low-gain mode, high-gain mode, insertion mode,

and contact mode. The low/high gain mode has low/high gains

in all directions, the insertion mode has high gains in the z
direction of the end-effector frame and low gains elsewhere.

Finally, the contact mode has low gains in the z direction

and high gains elsewhere. In our EquiContact implementation,

we use M = 0.5I6×6. We used only the diagonal terms

of the stiffness matrices Kp and KR for learning and GAC

implementation2. Therefore, the stiffness gains (Kp,KR) can

be represented with 6 dimension. The details are as follows:

• Low-gain: (Kp,KR) = (300, 300, 300, 300, 300, 300)
• High-gain: (Kp,KR) = (1000, 1000, 1000, 1000, 1000, 1000)
• Contact mode: (Kp,KR) = (1500, 1500, 300, 1500, 1500, 1500)
• Insertion mode: (Kp,KR) = (300, 300, 1500, 300, 300, 300)

We note that the detailed gains implementation may vary

significantly depending on the specific implementation, such

as sampling frequency and even robot firmware version. The

sets of working gains are found through trial and error.

b) Data Collection Methods: For the PiH task, the end-

effector is first aligned with high-gain mode, quickly converted

to the contact mode to make a surface contact and search for

a hole, and the insertion mode is activated when the peg is

slightly inserted into the hole. For the surface wiping task, the

high-gain mode is used to align with the whiteboard, and the

surface contact mode is used during the surface wiping. For

the screwing task, the high-gain mode is first used to align with

the screw hole, followed by contact mode for fine searching.

Then, the insertion mode is activated to ensure screw-locking,

and the low-gain mode is used for screw rotation.

c) Scene Randomization and details: The initial pose

of the end-effector is randomized for both with and without

background variations. We add arbitrary lab objects with

random poses for the background variations. The examples

of the scene randomization for PiH are presented in Fig. A1.

3) Text Prompts: Here, we additionally provide the full text

prompts used during the training. As mentioned in Sec. IV,

2This is also a great benefit of using geometric impedance/admittance
control [20].



(a) (b)

(c) (d)

Fig. A1: Examples of scene randomization during data collection
are shown. Notice the initial pose randomization of the end-effector
for all cases. (a) Example without background variations. (b)-(d)
Examples with background variations composed of arbitrary lab
objects with random poses.

the average text tokens are fed during the inference phase.

We provide the full text prompts for the PiH-placing task, but

show few samples for the other tasks to reduce verbosity.

a) PiH - Placing: Below is the full sets of text prompts

utilized for the PiH placing task.

• “A yellow peg approaching a light-gray assembly target

marked with blue.”

• “A cylindrical yellow peg inserted into a round light-gray

hole on a square board with blue tape edges.”

• “A yellow dowel being aligned with a light-gray target that

has blue markings on a flat surface.”

• “A yellow peg going into a light-gray round hole with blue

tape border.”

• “A yellow cylindrical peg and a round light-gray hole with

blue tape around the square board.”

• “A yellow plastic dowel aligning with a round light-gray

socket, blue tape square.”

• “A thick yellow pin approaching a light-gray round socket

with blue tape.”

• “A yellow peg being inserted into a light-gray circular hole

on a board with blue tape.”

• “A thick yellow stick above a light-gray round socket with

blue tape.”

• “A thick light-yellow stick aligning to a light-gray assembly

target with blue marks.”

• “A yellow plastic dowel being inserted into a round socket

with blue tape on a flat surface.”

• “Peg-in-hole task: yellow plastic peg and light-gray round

hole with blue tape around the board.”

• “A cylindrical yellow peg entering a light-gray circular

recess with a blue tape border.”

• “A yellow peg being aligned with a light-gray target that

has blue markings on a flat surface.”

• “A yellow peg approaching a light-gray assembly target

marked with blue.”

• “A yellow cylindrical peg inserted into a round light-gray

hole on a square board with blue tape edges.”

• “A yellow peg reoriented to align with a light-gray circular

hole bordered with blue tape.”

• “A yellow cylindrical peg re-aligning to fit into a round

light-gray hole with blue tape edges.”

b) PiH - Picking: Among the 13 prompts, we present 3
prompts for example in this paper.

• “A black robotic gripper is about to pick up a yellow peg.”

• “A robotic pick-up: a black gripper and a yellow peg object.”
...

• “A black robotic gripper reaching toward a yellow cylindri-

cal dowel”

c) Screwing Task: Below is the task prompts example of

screwing task among 16 prompts.

• “A yellow cylindrical peg rotating inside a round light-gray

hole with blue tape border.”

• “yellow plastic dowel aligning with a round light-gray

socket, blue tape square.”
...

• “A yellow peg being aligned and screwed into a light-gray

target with blue markings.”

d) Surface Wiping Task: Below is the task prompts

example of surface wiping task among 16 prompts.

• “A black metallic robotic gripper wiping black markings

with a yellow eraser.”

• “robotic gripper grasping a yellow eraser moving on top of

the black markings.”

• “a black robot gripper holding a yellow eraser moving over

black lines.”
...

• “black markings being erased by a yellow eraser held by a

robot gripper.”

B. Diff-EDF Implementation Details

Instead of following the original Diff-EDF pipeline, which

utilizes pick-and-place models, we used two pick models. This

decision mainly stems from the task setup, where the peg is

upright, and the peg is grasped by the gripper in an aligned,

upright pose. The core difference of the pick and place model

is that the place model needs to get the grasp point cloud

after each grasp to handle the right equivariance of the model.

However, from task setup, we bypass this right equivariance

issue, removing the necessity of the place model.

We also used the post-processing heuristics to filter the out-

put pose of the Diff-EDF. The Diff-EDF outputs 20 candidate

target poses for picking and 20 candidates for the place, which

are ranked by the energy level. Although in theory, the lower

energy poses should result in a better pose, we found out that

this does not hold in practice. Instead, we figured out that the



Algorithm 1 Inference Procedure of EquiContact

Require: Diff-EDF fθ1 , G-CompACT πθ2 , Task ∈ {pick, place}
1: Get scene and grasp point cloud Oscene, Ograsp

2: Run Diff-EDF for reference frame gEDF =fϕ(Oscene,Ograsp)
3: Move the end-effector near the reference frame and

initialize EquiContact πθ2

4: for each inference timestep k do
5: Get current sensor values g(k), Fe(k), Iw(k)
6: Calculate GCEV eG(k) = eG(g(k), gEDF ) (2)
7: Run G-CompACT:

(grel,Kp,KR)(k) = πθ(eG , Fe, Iw)(k) (1)
8: Calculate desired pose gd(k) = g(k)grel(k)
9: Update (gd,Kp,KR)(k) for GAC loop

10: Run GAC realizing desired dynamics (8), (9)
11: end for

Fig. A2: Whole pipeline implemented with ROS2 is presented.

Diff-EDF have low variations on the position of the “tip”. The

mean value of the tip position candidates are first calculated

and is used to recalculate the pose of the end-effector from

the known orientation (upright peg assumption). On the other

hand, for the placing, the desired orientation is calculated by

taking a mean value of the orientation. The position of the

end-effector is similarly calculated from the position of the

tip.

C. GAC Implementation

We implement the geometric admittance controller (GAC)

using the pose tracking controller. Given the desired dynamics

(8), the desired end-effector pose command g̃d(k) provided to

the end-effector controller is calculated in discrete time as

V b
d (k)=V b(k)+Ts ·M−1(Fe(k)−f

G
(k)−KdV

b(k)),

g̃d(k)=g(k) · exp (V̂ b
d (k) · Ts), (28)

where Ts is a sampling time (5ms for GAC) and (̂·) denotes

a hat-map.

D. Full Pipeline Implementation

As mentioned earlier, the full EquiContact pipeline is im-

plemented with ROS2 framework. The whole implementation

flow is presented in Fig. A2, and also summarized as in

Algorithm 1.

AIII. ADDITIONAL EXPERIMENTAL RESULTS

A. Errors of Diff-EDF

The RMSE error of the Diff-EDF on the training dataset is

presented in Table A2. The RMSE of the rotational error is

naively calculated from the Euler angles of the error rotation

matrix.

TABLE A2: RMSE error values of Diff-EDFs on the training dataset.
The dimensions of translational errors in x, y, z directions, given by
eT,x, eT,y, eT,z , are mm and the rotational errors in x, y, z directions,
given by eR,x, eR,y, eR,z , are deg.

eT,x eT,y eT,z eR,x eR,y eR,z

pick 7.173 6.933 6.199 7.650 15.90 15.67
place 13.75 8.241 5.999 3.806 5.560 5.660

TABLE A3: Results of vision encoder design study. OOD case here
is a 45◦ transformation in the y axis.

Backbone
Learning Rate Learning Rate Success Rate

(ηpolicy) (ηvision) In-dist OOD

RN18 1e− 05 1e− 05 10 / 10 6 / 10

CLIP-RN50-
frozen

1e− 05 0 3 / 10 3 / 10

CLIP-RN50-SB 1e− 05 1e− 06 10 / 10 0 / 10

CLIP-RN50
(proposed)

1e− 05 1e− 05 10 / 10 10 / 10

As noticed from the table, the translational error is signif-

icantly larger than the desired accuracy of precision of the

PiH task ∼ 1mm. In addition, the rotational error of the

picking task is significantly higher than that of the placing

task. Therefore, we use the “upright peg” assumption for the

full pipeline implementation.

B. Vision Encoder Design Study

Here, we conduct a controlled comparison of vision encoder

variants. To verify the design choices to meet the conditions

of Assumption 1, we have trained 4 models with the same

training dataset for PiH tasks, which are listed below:

• Baseline ACT architecture that uses ResNet 18 and without

language feature (RN18)

• ACT with pretrained CLIP-RN50 but is frozen (CLIP-

RN50-frozen)

• ACT with CLIP-RN50, but 10% of learning rate for vision

backbone (CLIP-RN50-SB, SB stands for slow backbone

training)

• ACT with CLIP-RN50, same learning rate for policy and

vision backbone (proposed)

We have tested our models in the in-distribution condition

and with a 45◦ transformation in the y axis, i.e., the third

case for extreme task transformations (Fig. 3). The results are

summarized in Table A3.

We first observe that the vision encoder without language

guidance degrades under the OOD rotation (6/10), although

background randomization during data collection partially mit-

igates background overfitting. In contrast, using a frozen CLIP-

RN50 encoder yields low success even in-distribution (3/10),

suggesting a significant domain mismatch between internet-

scale pretraining and the short-range wrist-camera viewpoint in

contact-rich manipulation. Interestingly, fine-tuning the CLIP-

RN50 encoder with a very small learning rate achieves high in-

distribution performance (10/10) but fails completely under the

OOD rotation (0/10). We speculate that the visual representa-

tion is not sufficiently adapted: the encoder adjusts only locally

to the training task configuration, without acquiring robustness



to large geometric shifts, making the downstream policy brittle

when viewpoint changes substantially. Finally, jointly fine-

tuning the CLIP-RN50 encoder together with the policy (pro-

posed) recovers both in-distribution and OOD performance

(10/10), indicating that stronger encoder adaptation is critical

for wrist-camera generalization under task transformations.


