Appendix

Al. PROOF OF PROPOSITIONS

In this section, we present the detailed proofs omitted
from the main manuscript. We begin by introducing some
preliminaries.

A. Preliminaries

We are interested in the matrix Lie group representation g of
the manipulator’s end-effector pose, where g € SE(3), given
by

g= | Pl e sp), (12)
0 1
where SE(3) is a Special Euclidean group, R € SO(3) with

SO(3) being a Special Orthogonal group, and p € R3. We
first define invariance and equivariance.

Definition 1 (SE(3) left invariance and equivariance). Let f
be a function f : X — ), so that y = f(x), where z € X
is a domain and y € ) is a co-domain. Then, a function f is
left-invariant to SE(3) (left) group action g; € SE(3) if the
following equation holds:

flgiox) = f(x),
where o is a group action on the domain or co-domain .
Similarly, a function f is left-equivariant to SE(3) group
action ¢; if the following holds:

flgrox) =gio f(x).

In fact, the group action is realized by the appropriate
group representation on the acting set, i.e., the domain or co-
domain, which is often denoted by p(g;) in group equivariant
deep learning literature [22]. Important examples widely used
throughout the paper include cases where the domain or co-
domain is SE(3) itself or the wrench! RS. If the set that the
group acts on is the SFE(3) group itself, then,

gog=4ag -9, nggl ESE(3)7 (15)

where - is a standard matrix multiplication. If the set that the
group actions on is the wrench RS, then,

(13)

(14)

gioh= Adglh, Vg € SE(3), Yh € RS, (16)
where Ad : SE(3) x R® — RS, defined as
_ |’ DR, 6x6
Adgl—[o RJGR : (17)

with g, = (p;, R;). For the details of the group action and
representation, we refer to [22].

Lemma 1 (Left invariance of GCEV and elastic wrench [19]).
The GCEV e, (2) and elastic wrench f, (9) is left-invariant,

! Although the original wrench should be represented in se*(3), a dual-
space of Lie-algebra, we use a vector representation of se*(3) to reduce
mathematical details.

ie., Yg1,92,91 € SE(3),
eq(g10(91,92)) = e (9191, 9192) = e (91, 92),
fe(gio(91,92, Kp, Kr)) = fo (9191, 9192, Kp, KR)
falg1, 92, Ky, KR).

(18)

Proof: Although the full proof is presented in [19], we in-
clude it for completeness. Let g; = (p;, R;), and ¢; = (pi, R;)
with ¢ = {1,2}. Then, the left-transformed homogeneous
matrix ¢;g; is calculated in the following way:

_ | B o] (Ri opi| _ |RiR: Ripi +p

NI=10 1)]o 1 0 1|
ie., g19; = (Rip; + pi, RiR;) The left-transformed GCEV is
then

. (g1, Gig2) = { RTRT (Ripy + pi — Ripz — 1) v]
1 2) —
¢ ((Rle)TRlRl — (RiR)"RiRy)

— R (p1 — p2) —

- |:(R%1R1 _ R{RQ)V - ec(glvg2)7 (19)
where the definition of the rotation matrix is used, i.e., RT R =
RRT = I,VR € SO(3). Similarly, the left-transformed elastic
wrench reads

fe(9191, 9192, Kp, Kr)
_ {(RlRl)TRlR?Kp(RlRQ)T(Rlpl +p — Ripa — Pl)]
B (Kr(RiRy)"RiRy — (RiR1)" RiR2KR)Y
T
- L IilszTzéflpfzé?RQ Izzﬁ)v — 191, 92K K). (20)
|

We note that the gains K, and Kpr are defined on the
desired frame [2], i.e., on the body-frame; therefore, they are
not affected by left-group actions (change of spatial coordinate
system).

B. Proof of Proposition 1
The left-transformed observation signals g; oo(k) reads that:
gioolk)=(gioes,g10Fe,g101). 21
As was shown in Lemma 1, the GCEV e, is left invariant as

gioe€g (g7gEDF) = €q (glg?glgEDF) = Cq (g7gEDF)'

The force-torque sensor values are left-invariant because they
are already defined with respect to the end-effector frame [19],
and the visual representation vectors satisfy left invariance if
Assumption 1 is ideally met. Combining all these properties,
it follows that

a(k) = mo(gi 0 0(k)) = Dy(groeq, g 0 Fe, po(g1 © Lw))
=Dyl(eq, Fe,z) = mo(o(k)), (22)
which shows the left invariance of the G-CompACT policy on
the end-effector frame. |
C. Proof of Corollary 1

Notice that the desired pose signal in the spatial frame g4
is obtained via (with a slight abuse of notation)

ga = ggrer = g - mo(o(k)) = w5 (0(k)), (23)



where the superscript s denotes that the policy is described
on the spatial frame, i.e., the world frame. Then, utilizing the
left-invariance property from Proposition 1, it follows that

(9194, Kp, Kr) = m3(g1 © 0(k))
= g9 - m(gi 0 o(k)) = gig - w(o(k)).
Therefore, when the policy is left-transformed by an arbitrary
element g; € SE(3), the resulting trajectories in the spatial

frame gq are also transformed to g;g4, showing the equivari-
ance property. |

(24)

D. Proof of Proposition 2

Let the object of interest, e.g., a peg for the picking task and
a hole for the placing task, be observed by O"¢f and I,, with
its pose given by g,.y, so that the left-translated g; - g,es is
observed by g; 0 O™/ from the point cloud, and g; o I,, by the
left-translated end-effector attached wrist camera as described
in Fig. 5. First, notice that hg can be fully written as

h@)(gagTefaFe) = fs (g,gd,Kp7KR)
= fG (gaﬂ-g(ec(gngDF)vFevIw))

= fc (gaﬂ-g(ec(gvfsa(oref))vFevl’w))

Note also that g, is fed to e, not g,y.
Then, when both g and g¢,.; undergo a left transformation
g1, from Assumption 1 and Corollary 1, the following holds:

h@ (glg7 glgrefa g1 © Fe)

= fG (glga Tr;(eG (glga ftp(gl o Oref))’ g1 © Fevgl o I’w))

= fc; (glga W;(ea (gl.ga glgEDF)7 g1 © Feagl o Iw)) (26)

- fc (glga 9194, Kpa KR) - fc (ga 9d, Kpa KR)

= h@(g7g7'ef7Fe)-
The second-last equation (SE(3) left-invariance of the elastic
wrench) comes from Lemma 1. Finally, as the hg is left-
invariant and is defined on the end-effector frame, from the
result of Proposition 2 of [19], heg is equivariant, if it is
described in the spatial frame, i.e.,

(25)

h%(glga 9giGref, g1 © Fe) = Ad£1 h@(gvgrefa Fe)> (27)

where Ad is a (large) adjoint operator. From Definition 1, hg)
is an equivariant function [19]. |

AIl. IMPLEMENTATION DETAILS
A. G-CompACT Training

1) Details on models: The objective of this chapter is to
highlight the details of the selected models, especially the
vision encoders. Our G-CompACT model has a CLIP-RNS50
vision backbone that is modulated by the FiLM layer from
the CLIP text encoder. A few notable hyperparameters are
summarized in the Table Al. As denoted in Fig. 1, we use
30Hz of inference frequency, with the chunking size of 60.
In addition, we used rotation vector (rotvec) representation
for relative pose actions, and 6D rotation (rot 6d) represen-
tation for world-pose observation and actions for benchmark
models. This is because the default end-effector configuration
in the world (spatial) frame tends to have a 180° rotation

TABLE Al: Hyperparameters of G-CompACT. The other hyperpa-
rameters are adapted from the ACT [37].

Names Values
Image Size [224, 224]
Learning Rate (policy) npoticy le — 05
Learning Rate (Vision Encoder) 7yision le — 05
Epochs 15,000
Batch Size 32
Batch Size 32

angle, leading to a sign flip when using the rotation vector
representation.

2) Dataset details: To collect the demonstration dataset, the
expert teleoperator monitors the task’s progress, makes real-
time movement commands via a SpaceMouse, and adjusts the
admittance gains using keyboard input to switch between pre-
defined gain modes: low-gain mode, high-gain mode, insertion
mode, and contact mode.

a) Admittance Gains: The gain modes utilized during the
training are low-gain mode, high-gain mode, insertion mode,
and contact mode. The low/high gain mode has low/high gains
in all directions, the insertion mode has high gains in the z
direction of the end-effector frame and low gains elsewhere.
Finally, the contact mode has low gains in the z direction
and high gains elsewhere. In our EquiContact implementation,
we use M = 0.5lx6. We used only the diagonal terms
of the stiffness matrices K, and Kg for learning and GAC
implementation®. Therefore, the stiffness gains (K,, Kg) can
be represented with 6 dimension. The details are as follows:
o Low-gain: (K,, Kr) = (300, 300, 300, 300, 300, 300)

o High-gain: (K,, Kr) = (1000, 1000, 1000, 1000, 1000, 1000)
« Contact mode: (K,, Kr) = (1500, 1500, 300, 1500, 1500, 1500)
o Insertion mode: (K,, Kr) = (300, 300, 1500, 300, 300, 300)

We note that the detailed gains implementation may vary
significantly depending on the specific implementation, such
as sampling frequency and even robot firmware version. The
sets of working gains are found through trial and error.

b) Data Collection Methods: For the PiH task, the end-
effector is first aligned with high-gain mode, quickly converted
to the contact mode to make a surface contact and search for
a hole, and the insertion mode is activated when the peg is
slightly inserted into the hole. For the surface wiping task, the
high-gain mode is used to align with the whiteboard, and the
surface contact mode is used during the surface wiping. For
the screwing task, the high-gain mode is first used to align with
the screw hole, followed by contact mode for fine searching.
Then, the insertion mode is activated to ensure screw-locking,
and the low-gain mode is used for screw rotation.

c) Scene Randomization and details: The initial pose
of the end-effector is randomized for both with and without
background variations. We add arbitrary lab objects with
random poses for the background variations. The examples
of the scene randomization for PiH are presented in Fig. Al.

3) Text Prompts: Here, we additionally provide the full text
prompts used during the training. As mentioned in Sec. IV,

2This is also a great benefit of using geometric impedance/admittance
control [20].



Fig. Al: Examples of scene randomization during data collection
are shown. Notice the initial pose randomization of the end-effector
for all cases. (a) Example without background variations. (b)-(d)
Examples with background variations composed of arbitrary lab
objects with random poses.

the average text tokens are fed during the inference phase.
We provide the full text prompts for the PiH-placing task, but
show few samples for the other tasks to reduce verbosity.

a) PiH - Placing: Below is the full sets of text prompts
utilized for the PiH placing task.

e “A yellow peg approaching a light-gray assembly target
marked with blue.”

e “A cylindrical yellow peg inserted into a round light-gray
hole on a square board with blue tape edges.”

o “A yellow dowel being aligned with a light-gray target that
has blue markings on a flat surface.”

o “A yellow peg going into a light-gray round hole with blue
tape border.”

o “A yellow cylindrical peg and a round light-gray hole with
blue tape around the square board.”

e “A yellow plastic dowel aligning with a round light-gray
socket, blue tape square.”

o “A thick yellow pin approaching a light-gray round socket
with blue tape.”

o “A yellow peg being inserted into a light-gray circular hole
on a board with blue tape.”

o “A thick yellow stick above a light-gray round socket with
blue tape.”

o “A thick light-yellow stick aligning to a light-gray assembly
target with blue marks.”

o “A yellow plastic dowel being inserted into a round socket
with blue tape on a flat surface.”

o “Peg-in-hole task: yellow plastic peg and light-gray round
hole with blue tape around the board.”

e “A cylindrical yellow peg entering a light-gray circular
recess with a blue tape border.”

o “A yellow peg being aligned with a light-gray target that
has blue markings on a flat surface.”

e “A yellow peg approaching a light-gray assembly target
marked with blue.”

o “A yellow cylindrical peg inserted into a round light-gray
hole on a square board with blue tape edges.”

o “A yellow peg reoriented to align with a light-gray circular
hole bordered with blue tape.”

e “A yellow cylindrical peg re-aligning to fit into a round
light-gray hole with blue tape edges.”

b) PiH - Picking: Among the 13 prompts, we present 3

prompts for example in this paper.

o “A black robotic gripper is about to pick up a yellow peg.”

o “A robotic pick-up: a black gripper and a yellow peg object.”

o “A black robotic gripper reaching toward a yellow cylindri-
cal dowel”

c) Screwing Task: Below is the task prompts example of
screwing task among 16 prompts.

o “A yellow cylindrical peg rotating inside a round light-gray
hole with blue tape border.”

o “yellow plastic dowel aligning with a round light-gray
socket, blue tape square.”

o “A yellow peg being aligned and screwed into a light-gray

target with blue markings.”
d) Surface Wiping Task: Below is the task prompts

example of surface wiping task among 16 prompts.

o “A black metallic robotic gripper wiping black markings
with a yellow eraser.”

« “robotic gripper grasping a yellow eraser moving on top of
the black markings.”

e “a black robot gripper holding a yellow eraser moving over
black lines.”

o “black markings being erased by a yellow eraser held by a
robot gripper.”

B. Diff-EDF Implementation Details

Instead of following the original Diff-EDF pipeline, which
utilizes pick-and-place models, we used two pick models. This
decision mainly stems from the task setup, where the peg is
upright, and the peg is grasped by the gripper in an aligned,
upright pose. The core difference of the pick and place model
is that the place model needs to get the grasp point cloud
after each grasp to handle the right equivariance of the model.
However, from task setup, we bypass this right equivariance
issue, removing the necessity of the place model.

We also used the post-processing heuristics to filter the out-
put pose of the Diff-EDF. The Diff-EDF outputs 20 candidate
target poses for picking and 20 candidates for the place, which
are ranked by the energy level. Although in theory, the lower
energy poses should result in a better pose, we found out that
this does not hold in practice. Instead, we figured out that the



Algorithm 1 Inference Procedure of EquiContact

Require: Diff-EDF fp,, G-CompACT my,, Task € {pick, place}
1: Get scene and grasp point cloud O*¢¢"¢, Q9P
2: Run Diff-EDF for reference frame g, = f,(O°"¢, O97*°P)
3: Move the end-effector near the reference frame and
initialize EquiContact g,
4: for each inference timestep k do
5: Get current sensor values g(k), Fe(k), L, (k)
6: Calculate GCEV e, (k) = e, (9(k), 9ppr) (2)
7 Run G-CompACT:
(97‘617 KT—H KR)(k) = 71-9(6G7 F67 -I’w)(k) (1)
8: Calculate desired pose gq(k) = g(k)grei (k)
9: Update (ga, Kp, Kr)(k) for GAC loop
10: Run GAC realizing desired dynamics (8), (9)
11: end for

TABLE A2: RMSE error values of Diff-EDFs on the training dataset.
The dimensions of translational errors in x,y, z directions, given by
€Tz, €T,y, €T,z, are mm and the rotational errors in x, y, z directions,
given by er ., €R,y, €R,-, are deg.

€T x €T,y €T,z €R,x €R,y €R,z
pick 7.173 6.933 6.199 7.650 15.90 15.67
place 13.75 8.241 5.999 3.806 5.560 5.660

TABLE A3: Results of vision encoder design study. OOD case here
is a 45° transformation in the y axis.

Learning Rate Learning Rate Success Rate

Backbone

(npolicy) (nvision) In-dist OOD
RNI18 le — 05 le—05 10/10  6/10
CLIP-RN50- le— 05 0 3/10 3710
frozen
CLIP-RN50-SB le—05 le—06  10/10  0/10
CLIP-RN50 le— 05 le—05 10/10 10710
(proposed)
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Fig. A2: Whole pipeline implemented with ROS2 is presented.

Diff-EDF have low variations on the position of the “tip”’. The
mean value of the tip position candidates are first calculated
and is used to recalculate the pose of the end-effector from
the known orientation (upright peg assumption). On the other
hand, for the placing, the desired orientation is calculated by
taking a mean value of the orientation. The position of the
end-effector is similarly calculated from the position of the

tip.
C. GAC Implementation

We implement the geometric admittance controller (GAC)
using the pose tracking controller. Given the desired dynamics

(8), the desired end-effector pose command g4(k) provided to
the end-effector controller is calculated in discrete time as

Vi(k)=V (k) +Ts - M~ (Fe(k)~ fo (k) KaV* (k)),
Ja(k)=g(k) - exp (V7 (k) - T), (28)
where T is a sampling time (5ms for GAC) and (A) denotes
a hat-map.
D. Full Pipeline Implementation

As mentioned earlier, the full EquiContact pipeline is im-
plemented with ROS2 framework. The whole implementation
flow is presented in Fig. A2, and also summarized as in
Algorithm 1.

AIIl. ADDITIONAL EXPERIMENTAL RESULTS
A. Errors of Diff-EDF

The RMSE error of the Diff-EDF on the training dataset is
presented in Table A2. The RMSE of the rotational error is
naively calculated from the Euler angles of the error rotation
matrix.

As noticed from the table, the translational error is signif-
icantly larger than the desired accuracy of precision of the
PiH task ~ 1mm. In addition, the rotational error of the
picking task is significantly higher than that of the placing
task. Therefore, we use the “upright peg” assumption for the
full pipeline implementation.

B. Vision Encoder Design Study

Here, we conduct a controlled comparison of vision encoder
variants. To verify the design choices to meet the conditions
of Assumption 1, we have trained 4 models with the same
training dataset for PiH tasks, which are listed below:

o Baseline ACT architecture that uses ResNet 18 and without
language feature (RN18)

o« ACT with pretrained CLIP-RN50 but is frozen (CLIP-
RN50-frozen)

o ACT with CLIP-RN50, but 10% of learning rate for vision
backbone (CLIP-RN50-SB, SB stands for slow backbone
training)

o ACT with CLIP-RN50, same learning rate for policy and
vision backbone (proposed)

We have tested our models in the in-distribution condition
and with a 45° transformation in the y axis, i.e., the third
case for extreme task transformations (Fig. 3). The results are
summarized in Table A3.

We first observe that the vision encoder without language
guidance degrades under the OOD rotation (6/10), although
background randomization during data collection partially mit-
igates background overfitting. In contrast, using a frozen CLIP-
RN50 encoder yields low success even in-distribution (3/10),
suggesting a significant domain mismatch between internet-
scale pretraining and the short-range wrist-camera viewpoint in
contact-rich manipulation. Interestingly, fine-tuning the CLIP-
RN50 encoder with a very small learning rate achieves high in-
distribution performance (10/10) but fails completely under the
OOD rotation (0/10). We speculate that the visual representa-
tion is not sufficiently adapted: the encoder adjusts only locally
to the training task configuration, without acquiring robustness



to large geometric shifts, making the downstream policy brittle
when viewpoint changes substantially. Finally, jointly fine-
tuning the CLIP-RN50 encoder together with the policy (pro-
posed) recovers both in-distribution and OOD performance
(10/10), indicating that stronger encoder adaptation is critical
for wrist-camera generalization under task transformations.



