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Fig. 1: We propose an EquiContact, a hierarchical, provably SE(3) vision-to-force equivariant policy for spatially generalizable contact-rich
tasks. (Left) The proposed EquiContact consists of a Diffusion-Equivariant Descriptor Field (Diff-EDF) and a Geometric Compliant Action
Chunking Transformer (G-CompACT). The Diff-EDF, the high-level planner, first processes the scene point cloud to produce reference
frames for pick-and-place tasks for the G-CompACT to anchor on. With the provided reference frames, the G-CompACT outputs the relative
pose and admittance gains from real-time wrist cameras and proprioceptive feedback. The output relative pose and admittance gains are
then fed to geometric admittance control (GAC) that provides compliant motion command to the robot. (Right) The G-CompACT method
is trained only on the fixed task configuration, but it can be generalized to task configurations that undergo arbitrary SE(3) transformation,
given the reference frames.

Abstract—This paper presents a framework for learning vision-
based robotic policies for contact-rich manipulation tasks that
generalize spatially across task configurations. We focus on
achieving robust spatial generalization of the policy for the
contact-rich tasks trained from a small number of demonstra-
tions. We propose EquiContact, a hierarchical policy composed
of a high-level vision planner (Diffusion Equivariant Descriptor
Field, Diff-EDF) and a novel low-level compliant visuomotor
policy (Geometric Compliant Action Chunking Transformers,
G-CompACT). G-CompACT operates using only localized ob-
servations (geometrically consistent error vectors (GCEV), force-
torque readings, and wrist-mounted RGB images) and produces
actions defined in the end-effector frame. Through these design
choices, we show that the entire EquiContact pipeline is SE(3)-
equivariant, from perception to force control. We also outline
three key components for spatially generalizable contact-rich
policies: compliance, localized policies, and induced equivariance.
Real-world experiments on peg-in-hole (PiH), screwing, and
surface wiping tasks demonstrate a near-perfect success rate and
robust generalization to unseen spatial configurations, validating
the proposed framework and principles. The experimental videos
will be attached as supplementary material, and the codes will

be released.

I. INTRODUCTION

Imitation learning has recently shown significant success

in expanding the capabilities of machine learning in real-

world robotics applications [13, 1]. In the early stages of

robot learning, many methods formulated manipulation as

sequences of keyframe-based pick-and-place actions [34, 24].

More works have started to produce a continuous set of actions

directly from vision inputs [4, 37, 23]. Similar to the trend

seen in large language models (LLMs), there is a growing

belief that large-scale data can unlock generalizable, vision-

based policies for robotics [9]. This has led to massive efforts

to build large datasets [13] for training policies with general

knowledge.

However, such policies often lack spatial generalizability

and therefore require a large amount of data to learn ro-

bust behaviors. As described in [30], both action chunking



transformers (ACT) [37] and diffusion policy (DP) [4] are

evaluated only within the limited spatial variations. Further-

more, both methods exhibit near-linear performance growth

as the demonstration dataset size increases, suggesting that

the trained policies do not inherently generalize well to new

spatial configurations, but rather tend to interpolate between

seen demonstrations.

An alternative line of recent research focuses on leverag-

ing symmetry—particularly equivariance—to enhance spatial

generalizability, thereby improving sample efficiency during

training [22, 19]. This approach requires less data but comes

with its own challenges. Equivariant neural networks, being of

a more specialized nature, are often not as well-developed and

are more computationally intensive than their non-equivariant

counterparts, making real-time and large-scale deployment

more difficult. As a result, it becomes more attractive for users

to use standard models trained with massive datasets in many

instances.

In [19], a SE(3)-equivariant gain-scheduling policy using

geometric impedance control (GIC) [20, 21] was proposed to

solve peg-in-hole (PiH) problems. Inspired by the view that

many manipulation tasks can be framed as pick-and-place

problems [24], we modeled PiH as a compliant pick-and-

place task, where final peg poses are provided by vision-based

SE(3)-equivariant models such as Diffusion-EDF (Diff-EDF)

[18]. Since both the high-level planner and low-level variable

impedance controller are equivariant, they can be combined to

form a vision-to-force equivariant policy. However, in practice,

Diff-EDF’s placement accuracy proved insufficient for pre-

cision tasks, which require sub-millimeter precision (details

provided in Appendix AIII-A. This revealed a key limita-

tion: high-level vision planners may capture global structures

but struggle with precision and contact-sensitive execution.

Henceforth, we introduce an intermediate layer between the

planner and the low-level controller, which provides real-time

visual feedback to correct the residual errors of the high-level

planner.

In this paper, we propose EquiContact, a hierarchical SE(3)
vision-to-force equivariant policy for spatially generalizable,

contact-rich tasks. It consists of two main components: a high-

level planner using Diffusion Equivariant Descriptor Fields

(Diff-EDF) [18], which estimates a local reference frame from

point clouds, and a low-level compliant visuomotor policy

based on Action Chunking Transformer (ACT) [37], which

we refer to as Geometric Compliant ACT (G-CompACT). A

key design feature of G-CompACT is that it only relies on

local information: the force-torque signal in the end-effector

frame, a geometrically consistent error vector (GCEV) [19],

and wrist camera inputs. The output of G-CompACT is the

relative desired pose and admittance gains, which are then

sent to the geometric admittance controller (GAC) module

to execute compliant control. Our contribution lies in the

framework design, not in specific model choices; for example,

Diff-EDF could be replaced by ET-SEED [26], or ACT by

other visuomotor policies.

The main contributions of this paper are as follows:

1) We propose EquiContact, a hierarchical, provably SE(3)-
equivariant policy from point clouds and RGB inputs to

interaction forces for executing contact-rich tasks.

2) We identify three key principles for spatially generalizable

contact-rich manipulation: (1) left-invariant compliant
control action (via GAC [19]), (2) localized policy (left
invariance), and (3) induced equivariance. These enable

SE(3)-equivariant behavior without requiring explicitly

equivariant neural networks [22].

3) Under these principles, we present the necessary conditions

for SE(3) vision-to-force equivariant policy, and mathe-

matically prove the equivariance property of EquiContact.

4) We demonstrate that EquiContact achieves near-perfect

success rates and spatial generalizability when these con-

ditions are met in real robot experiments involving peg-in-

hole, screwing, and surface wiping tasks.

From these key principles, we propose a general framework

to enhance the spatial generalization and interpretability of

vision-based policies, namely, “anchoring localized policy on

globally estimated reference frame.” We emphasize that our

work provides complementary insights to recent trends in

robot learning [13, 9, 5, 1] that aim to build generalist policies

from large-scale demonstration datasets. Our principles pro-

vide structural guidelines for improving spatial generalizability

via SE(3) equivariance.

II. RELATED WORKS

Visuomotor Servoing Methods Recently, generative mod-

eling has become mainstream in realizing visuomotor servoing

policies. Particularly, there are two dominant methods for

visuomotor servoing: Action Chunking with Transformers

(ACT) [37] and Diffusion Policy (DP) [4]. ACT uses a

conditional variational autoencoder (CVAE) as its generative

model, whereas DP uses denoising diffusion. ACT and DP

have been extended to other approaches, including compliance

and force-reactive behaviors [8, 7, 32], as well as structural

improvements [14, 5, 29]. Our work is most closely related to

CompliantACT (CompACT) [8], which integrates compliant

control for visuomotor policies. We have significantly im-

proved CompACT by incorporating a provable SE(3) equiv-

ariant structure.

Equivariant Methods Earlier equivariant approaches at-

tempted to handle manipulation tasks as an extension of pick-

and-place tasks, by leveraging SE(3) equivariance from point

clouds [25, 26, 18] or SO(2) equivariance [34] from top-down

views. Equivariant approaches have been extended to visuo-

motor policies, such as DP or flow matching, [6, 33], using

point clouds. [28, 27] proposed SO(2) equivariant visuomotor

policies using 2D images, not fully considering SE(3). In

contrast, our approach induces full SE(3) equivariance from

vision to control force without relying on explicitly equivariant

neural networks, but using structured observations and actions

via geometrical canonicalization. Furthermore, by integrating

with SE(3) equivariant control, we generalize beyond table-

top settings to contact-rich manipulation.



Fig. 2: (Left) Overview of the workspace for the peg-in-hole assembly
task is presented. 2 external cameras with calibrated extrinsics and
2 wrists cameras are installed. The workspace shown is the Diff-
EDF workspace. (Right-Top) Peg and hole assembly with 1mm
of clearance. (Right-Bottom) Hole part with flat and tilted (30◦)
platforms.

Manipulation in Object Frame Our induced SE(3) equiv-

ariant approach relies on representing the visuomotor policy in

the end-effector frame. While recent works [3, 17, 36] define

policies in the target (object) frame, policy representation in

the end-effector frame offers improved fidelity and robustness.

This is because the estimated object frame can be noisy, and

the end-effector frame is reliably obtained via forward kine-

matics. Importantly, compared to [3, 17], we explicitly link

the choice of reference frame to the equivariance property, and

unlike [36], which only handles translational transformations,

our method can deal with full SE(3) transformations of the

reference frame.

III. PROBLEM DEFINITION

In this paper, we aim to identify the key structural compo-

nents required for learning policies that generalize spatially

in contact-rich manipulation tasks. We will first focus on

the peg-in-hole (PiH) problem as a representative force-based

assembly task and validate the feasibility of the proposed

approach to other contact-rich tasks later. Our proposed frame-

work achieves SE(3) vision-to-force equivariance through

three essential design principles: (1) left-invariant compliant

control, (2) localized policy, and (3) induced equivariance.

These principles are validated through specific data collection

and evaluation setups, as detailed below.
Unlike prior work [19] that assumes a known hole pose

and a pre-grasped peg, we consider a more general setup:

the robot must first grasp the peg and then perform insertion

using vision, proprioception, and task description in text, as

illustrated in Fig. 2. We assume the peg is upright and that

the hole’s yaw angle is known within 90◦ range. Given an

initial estimate, we resolve the orientation by selecting the

closest angle among the four symmetric candidates (e.g.,

ψ, ψ + 90◦, ψ + 180◦, ψ + 270◦). As mentioned earlier, high-

level vision planners often lack the precision needed for tight-

tolerance tasks like PiH, which in our case requires < 1mm
accuracy.

To accommodate this, we propose a low-level compliant

policy that:

• provides real-time visual feedback to refine the coarse high-

level command,

Fig. 3: Extreme task transformations. (Left) 90◦ transformation
in x axis. (Middle) 135◦ transformation in x axis. (Right) 45◦

transformation in y axis, facing towards the camera.

• handles fine force-based interactions through compliance,

• and achieves provable SE(3)-equivariance.

We assume that a high-level vision planner (e.g., Diff-EDF)

can generate approximate pick-and-place poses. Our focus is

on developing an equivariant compliant placing policy, i.e.,

insertion policy, using imitation learning. We further assume

the peg is approximately aligned with the gripper during

placement, since arbitrary peg poses introduce two challenges:

(1) imprecise grasps can lead to slippage during contact, and

(2) compensating for slippage requires continuous estimation

of the gripper-to-peg transformation, which is difficult to

achieve reliably in real time.

To train this policy, we collect expert demonstrations of

insertions on a fixed-platform setting with a known hole

location, where its objective is to train a policy that performs

nearly perfectly in the trained scenario. We then evaluate

benchmark and proposed methods, trained solely on these

limited demonstrations, across arbitrarily translated and ro-

tated test scenarios, thereby isolating and testing individual

components of our spatially generalizable contact-rich policy.

Further, we demonstrate that our proposed approach can adapt

to extreme task transformations as shown in Fig. 3.

Finally, the validity of the proposed EquiContact method is

shown in other contact-rich tasks, such as the screwing task

and surface-wiping tasks.

IV. SOLUTION APPROACH

We introduce the EquiContact framework in this Section.

The EquiContact framework integrates a high-level vision

planner (Diffusion Equivariant Descriptor Field, Diff-EDF)

with a low-level compliant visuomotor policy (Geometric

Compliant ACT, G-CompACT) and geometric admittance

control (GAC) at the lowest level. The Diff-EDF gets the

point cloud inputs from external cameras to generate refer-

ence frames. Based on the estimated reference frames, the

G-CompACT process the real-time proprioceptive and wrist

camera feedback to output desired poses and admittance gains.

In what follows, the GAC module outputs the geometrically

consistent compliant motion from desired poses and admit-

tance gains to enable equivariant force interaction. We first

focus on the insertion task, with extension to picking addressed

later in the paper.



Fig. 4: G-CompACT architecture is presented. The G-CompACT πθ

receives GCEV eG (2) and F/T sensor value Fe as proprioceptive
inputs, along with two wrist camera images Iw. The wrist camera
images are fed to the CLIP-ResNet50 visual backbone, followed by
the Feature-wise Linear Modulation (FiLM) layer. The FiLM layer
is modulated by the text tokens ttext from the (frozen) CLIP text
encoder, which processes the task descriptions. The proprioceptive
inputs and the latent features of modulated vision z are then fed to
the transformer decoder Dψ , which outputs the action signals a. Note
that we omitted the style variable for the transformer decoder, and 0
values are used during inference.

Conceptually, EquiContact follows a simple yet powerful

principle: “anchoring a localized policy on a globally
estimated reference frame.” In our framework, G-CompACT

serves as a fully localized low-level policy, operating solely

on observations defined in the current end-effector frame, and

actions defined in the end-effector frame – See Fig. 4. The

high-level planner, Diff-EDF, estimates the pose of the target

(e.g., hole) in the world (global) frame. At the inference,

the robot moves near the estimated reference frame, and G-

CompACT is activated to perform compliant motion using

only local feedback. Because the low-level policy does not

depend on absolute global inputs, it can transfer robustly to

unseen spatial configurations when the estimated reference

frame is provided. This divide-and-conquer design provides

a general framework for enhancing both spatial generalization

and policy interpretability for contact-rich, and more broadly,

general manipulation tasks. In the remainder of this section,

we formalize this spatial generalization property as SE(3)
equivariance and show how EquiContact satisfies this by its

design choices.

A. Geometric Compliant control Action Chunking with Trans-
formers (G-CompACT)

G-CompACT is based on the Action Chunking with Trans-

former (ACT), which is a CVAE-based generative model

designed for imitation learning in robotic manipulation tasks

[37]. To make G-CompACT spatially equivariant, we follow

the principles proposed in [19]:

• Left-invariant policy, and

• Policy representation in the end-effector body frame

We have designed the G-CompACT architecture to achieve

this properties as described in this chapter. The overall struc-

ture of the G-CompACT is also summarized in Fig. 4. The

observations are given by, (1) Geometrically Consistent Error

Vector (GCEV) e
G

proposed in [19], (2) FT sensor in the end-

effector frame Fe to capture contact behaviors, and (3) RGB

images Iw = {Iw,1, Iw,2} from wrist cameras (see Fig. 5).

For actions, we choose (1) relative pose from the current end-

effector frame grel, and (2) admittance gains for Geometric

Admittance Control (GAC) (Kp,KR). The details of GAC and

the definition of gains will be provided later in the Section.

Formally, the G-CompACT method πθ can be written as:

a(k) = πθ(o(k)), where

a(k) � (grel,Kp,KR)(k), o(k) � (e
G
, Fe, Iw)(k),

(1)

where a(k) denotes the actions, and o(k) denotes the obser-

vation at time step k. Although the G-CompACT outputs the

actions of chunk size N , we will only consider the single-step

action after proper processing, such as a temporal ensemble,

for notational compactness. The GCEV e
G
(g, gref ) ∈ R

6 is

defined as

e
G
(g, gref ) =

[
RT (p− pref )

(RT
refR−RTRref )

∨

]
, (2)

where g = (p,R) ∈ SE(3) is a current end-effector pose,

gref = (pref , Rref ) ∈ SE(3) is the reference frame estimated

by the global estimator, e.g., Diff-EDF, and (·)∨ denotes the

vee-map, a mapping from so(3) (Lie algebra of SO(3)) to R
3.

The physical meaning of GCEV is an error vector between the

current end-effector frame and the reference frame, defined

on the current end-effector frame. As will be elaborated in

Appendix AI, the proprioceptive signals e
G

and Fe are left-

invariant. For the details of GCEV e
G

, we refer to [19, 20].

The images Iw are fed to the transformer decoder Dψ after

being processed by the vision encoder structure μφ; therefore,

one can further represent G-CompACT as

a(k) = Dψ(eG
, Fe, z)(k) = Dψ(eG

, Fe, μφ(Iw))(k), (3)

where z = μφ(Iw) is a visual feature from the vision encoder.

To satisfy the left-invariant condition of G-CompACT, the

features from the vision encoder z need to be invariant to

the left-transformation of the image. We formalize the left-

invariant visual feature condition as the following assumption.

Assumption 1 (Approximately Left-invariant Visual Features).
The visual encoder μφ produces features that are approxi-

mately left-invariant to task transformations, i.e.,

μφ(gl ◦ Iw) ≈ μφ(Iw), (4)

∀gl ∈ SE(3) that preserves local task geometry.

Here, ≈ notation denotes invariance up to a bounded rep-

resentation error that does not affect the policy’s qualitative

behavior. Note that we refer to ◦ as a group action [22]. The

left-group action applied to the wrist-camera images gl ◦ Iw is

illustrated in Fig. 5. The meaning of the visual representation

z being left-invariant is that the vision encoder μφ is trained

to focus only on group action invariant features, such as the

flat surface surrounding the hole on the platform. To satisfy

this assumption, we use language grounding to extract vision

features that are correlated with the language description. The

core insight behind this is that language tokens encode object

identity rather than pose, and thus provide a conditioning

signal that is invariant to global SE(3) transformations of the

scene. For example, a “peg” is still “peg” no matter from which

view it is seen.

Specifically, the pretrained CLIP-ResNet50 (CLIP-RN50)



Fig. 5: Effects of the left group action gl to the end-effector pose g
and the reference frame gref , and to the wrists cameras Iw,1 and Iw,2.
As the left group action is applied to the end-effector and the target
object, the wrist cameras start to see the backgrounds of arbitrary lab
objects.

[16] is utilized for the vision encoder, and the CLIP text

encoder is also employed. Although the pretrained CLIP-

RN50 was used, it was fully retrained (details provided in

Appendix AII); thereby, it served as a good initialization. We

provide the task descriptions to the text encoder to obtain text

tokens ttext. The vision feature zraw of CLIP-RN50 backbone

is then modulated using feature-wise linear modulation (FiLM,

[15]) layer from ttext via

z = β(ttext)zraw + γ(ttext), (5)

where β and γ are trainable FiLM layer. Using FiLM, the

vision features are suppressed or highlighted to align with

task-relevant semantic concepts, empirically encouraging ap-

proximate left-invariance with respect to workspace transfor-

mations.

Under the satisfaction of Assumption 1, i.e., ideal left-

invariant vision feature condition, the following proposition

shows the left-invariance of the G-CompACT method in the

end-effector frame.

Proposition 1 (Left-invariance of G-CompACT under ideal
invariant visual features). Suppose Assumption 1 holds. Then

the G-CompACT policy πθ is left-invariant in the end-effector

frame, i.e.,

πθ(gl ◦ o(k)) = πθ(o(k)), ∀gl ∈ SE(3). (6)

The proof is presented in Appendix AI. A remark is

provided.

Remark 1 (Implication of Proposition 1). Proposition 1

highlights a sufficient structural condition for spatial gen-

eralization: if the visual encoder and proprioceptive signals

can be made (approximately) left-invariant to SE(3) task

transformations, then the resulting closed-loop policy inherits

left-invariance by construction. This motivates learning or

enforcing representations that satisfy Assumption 1.

In what follows, we present an equivariant property of the

pose signal produced by G-CompACT when described in the

spatial frame.

Corollary 1 (SE(3) Equivariance of G-CompACT). The G-

CompACT πθ represented in the spatial frame satisfies the

following equivariance property:

(glgd,Kp,KR)(k) = πθ(gl ◦ o(k)). (7)

The proof is presented in Appendix AI.

B. Geometric Admittance Control (GAC)

We implement the geometric impedance control (GIC) pro-

posed in [20, 21] in the geometric admittance control (GAC)

setup [19]. Let the end-effector pose be denoted as g ∈ SE(3)
in a homogeneous matrix representation, or simply g = (p,R),
where p ∈ R

3 is a position of the end-effector and R ∈ SO(3)
is a rotation matrix of the end-effector. The GAC operates with

the (gd,Kp,KR) signal calculated from G-CompACT, where

the desired end-effector pose is calculated via gd = ggrel.
Given gd = (pd, Rd), the desired end-effector dynamics for

the GAC setup is written as follows:

MV̇ b +KdV
b + f

G
= Fe, (8)

where M ∈ R
6×6 is symmetric positive definite desired inertia

matrix, Kd ∈ R
6×6 symmetric positive definite damping

matrix, Fe ∈ R
6 is external wrench applied to the end-

effector in end-effector body frame and V b ∈ R
6 is a

body-frame end-effector velocity. Kd matrix is selected to

ensure overdamped system, as Kd = 3·blkdiag(
√
Kp,

√
KR).

Further, f
G

= f
G
(g, gd,Kp,KR) ∈ R

6 is a elastic wrench

given by:

f
G
=

[
fp
fR

]
=

[
RTRdKpR

T
d (p− pd)

(KRR
T
d R−RTRdKR)

∨

]
, (9)

where Kp,KR ∈ R
3×3 symmetric being positive stiffness

matrices for the translational and rotational dynamics, respec-

tively. The desired end-effector pose command is calculated

using (8), which is then passed to the robot as the pose

command signal. For details on GIC/GAC, we refer readers

to [20, 19].

C. Diffusion-Equivariant Descriptor Field (Diff-EDF)

Diffusion-Equivariant Descriptor Field (Diff-EDF) [18] is

an SE(3)-equivariant reference frame estimator for pick-and-

place tasks. In EquiContact, Diff-EDF serves as a high-level

vision module that provides a coarse target reference frame

for the downstream localized policy.

Given a scene point cloud Oscene and a gripper point cloud

Ograsp expressed in the end-effector frame, Diff-EDF outputs

an estimated target pose g
EDF

∈ SE(3):

g
EDF

= fϕ(Oscene,Ograsp). (10)

Diff-EDF is designed to be left-equivariant with respect to

SE(3) transformations of the target object [18]. Let Oref ⊂
Oscene denote the subset of points corresponding to the object

of interest, e.g., hole assembly. Then, for any gl ∈ SE(3),

fϕ(gl ◦ Oref ,Ograsp) = gl · fϕ(Oref ,Ograsp). (11)

EquiContact relies only on the equivariance property of the

reference frame estimator; the specific architecture of Diff-

EDF is otherwise not essential and may be replaced by any

SE(3)-equivariant reference frame estimator. Importantly, the



localized policy G-CompACT is left-invariant by construction

and does not require an SE(3)-equivariant estimator. In the

absence of an equivariant reference frame estimator, the overall

pipeline no longer guarantees end-to-end SE(3) equivariance;

still, the local equivariance of G-CompACT is preserved.

D. EquiContact

The proposed EquiContact method comprises the high-

level Diff-EDF and the low-level G-CompACT. In Proposi-

tion 2, we demonstrate that if an SE(3) equivariant refer-

ence frame estimator, such as Diff-EDF, is used, then the

resulting EquiContact possesses the equivariance property. Let

EquiContact be written as hΘ so that hΘ(g, gref , Fe) �→ f
G

,

i.e., hΘ : SE(3)× SE(3)× R
6 → R

6.

Proposition 2. Suppose that the Assumption 1 holds. The

EquiContact policy hΘ is equivariant if it is described relative

to the spatial frame.

The proof is shown in the Appendix AI.

E. Extensions to Pick Tasks

So far, we have described our method in terms of the inser-

tion (placement) task. The proposed method can be extended

to pick tasks in the same manner. The Diff-EDF can be utilized

to obtain the pick reference frame, which is used for e
G

for the

picking G-CompACT. The picking G-CompACT is trained in

such a way that the manipulator grasps a peg in a fixed, aligned

pose, which helps EquiContact bypass the right-equivariance

issue. For G-CompACT, the FT sensor values are not utilized

as one of its observations, and it does not output the admittance

gains; instead, it uses fixed gains.

V. EXPERIMENTS AND DISCUSSIONS

We have conducted sets of experiments to validate the

proposed SE(3) vision-to-force equivariance property of the

EquiContact. In particular, we aim to answer the following

research questions:

RQ1 What are the key principles for spatially generalizable

contact-rich manipulation tasks?

RQ2 Can the EquiContact framework be extended to general

contact-rich tasks other than the PiH task?

RQ3 Do our design choices of EquiContact really lead to

spatial generalization?

First, to answer RQ1, we compare the proposed EquiContact

against three baselines in the PiH task: ACT with world frame

observations and actions, executed with and without GAC, and

CompACT [8]. To answer RQ2, we have trained and tested

EquiContact with known reference frames on the screwing and

surface wiping tasks – See Fig. 6. Finally, to answer RQ3,

we have tested EquiContact with known reference frames on

the extreme transformation scenarios for all tasks as shown in

Fig. 3.

Before diving into the experimental results, we introduce the

implementation details for training and inference of EquiCon-

tact.

Fig. 6: (Left) Screwing task is first to align the peg to the hole and
screw-insert the peg. (Right) Surface wiping (erasing) task is to erase
the black marker lines with the eraser. The same platform structure
of the PiH is used.

A. Implementation details

Training: First, we note that the G-CompACT and Diff-

EDF are separately trained but executed in a single pipeline.

To train a G-CompACT, we collect expert demonstrations

via teleoperation at a fixed platform pose. We have collected

a dataset not only with a pure white background but also

with arbitrary visual distractors, so that the policy can learn

to reject background perturbations. We have provided 13-18
prompts for each task. The details regarding the gain modes,

language prompts, and scene randomization are provided in

Appendix AII.

Since we know the platform’s fixed pose a priori during

training, e.g., a ground-truth reference frame, the GCEV vector

can be computed. Nevertheless, the reference frame needs to

be estimated via Diff-EDF (as g
EDF

) during the inference

stage, which may have non-negligible errors. To handle this

issue, we have added noise to the reference frame gref to

calculate e
G

during dataset preprocessing. This provides the

model with an inductive bias to primarily rely on e
G

values for

rough alignment and rely on vision feedback for fine-grained

motion. The rest of the training follows the standard imitation

learning pipeline.

To train Diff-EDF, the scene and grasp point clouds are

collected together with the target reference frames, which

represent the desired poses of the end-effector for pick-and-

place operations. 20 demonstrations were collected for the

Diff-EDF: 10 samples of the flat platform and 10 samples

of the tilted platform, both translationally and rotationally

randomized. The training process of Diff-EDF follows the

procedure in [18].

Inference: We have implemented the EquiContact pipeline

using the ROS2 framework. First, the scene point clouds

are obtained and processed by Diff-EDF, producing reference

frames for pick-and-place. Using these reference frames, the

robot first moves near them, and the G-CompACT is activated

near the target objects. During inference, we first obtain the

task tokens from the previously used 13−18 task prompts and

feed the mean value of these tokens to the policy. The overall

pipeline of the EquiContact is presented in Fig. 1, and also

summarized in Algorithm. 1 in the Appendix. Please refer to

the Appendix AII for in-depth implementation details.



Fig. 7: Force profiles of CompACT and ACT with GAC (fixed gains)
during insertion tasks are presented. The CompACT with force-torque
sensor inputs and output gains shows lower interaction force in all
directions.

B. Peg-in-Hole Benchmark Results

Table. I summarizes the observation/action representations

used in each method and reports the benchmark results across

all setups.
1) Demonstration of Compliance: As the importance of

left-invariant compliant control action has already been ver-

ified in [19], we focus on verifying the necessity of compliant

control action. We begin by evaluating the role of compliance

using the same ACT model architecture, executed with and

without the Geometric Admittance Control (GAC). Results for

this comparison are shown in the 1st and 2nd rows of Table I.

Without GAC, the ACT model shows significantly lower

success rates. The failure mode of the ACT w/o GAC involves

collision: as the robot approaches the platform, excessive

contact forces trigger safety shutdowns, preventing the task

from completing. Due to the safety issue, we limited the

number of trials without GAC to 5. This result demonstrates

that compliant control is nearly a deciding factor between

success and failure in contact-rich tasks.

The advantage of variable-compliant gain is that one can

achieve the desired force interaction behavior through ad-

mittance gains. To show this, we compare ACT with GAC

and CompACT under in-distribution (In-Dist.) flat platform

settings. Although both methods achieve near-perfect success

rates, their force profiles during insertion differ substantially.

As shown in Fig. 7, CompACT, which outputs task-adaptive

admittance gains based on force-torque feedback, consistently

produces lower interaction forces, especially in the z-direction.

Note that during the data collection, we modulate the gains

to reduce the force interaction in the z-direction but do not

consider the magnitudes of torques. As a result, CompACT

showed higher interaction torque throughout the task. The

effectiveness of the CompACT compared to the baseline ACT

was already presented in [8].
2) Demonstration of Equivariance: Although the Com-

pACT succeeds in insertion tasks in trained scenarios without

excessive force exertion, it fails to generalize to spatially

unseen configurations. This is expected, as its observation

and action representations are defined in the global spatial

frame, which neither guarantees nor encourages equivariance.

The result of applying CompACT to the translationally unseen

cases is shown in the Table I 3rd row - Flat Platform (OOD).

Note that only a flat platform is used, meaning it is randomized

only translationally. We tested for 10 cases and did not conduct

more tests because it resulted in a 0% success rate.

In contrast, the proposed method (EquiContact) achieves

perfect success rates on the translationally unseen flat platform,

as can be seen in the 4th row of Table I. As shown in

Section IV, EquiContact has SE(3) vision-to-force equivari-

ance, achieving a near-perfect success rate, even on the tilted

platform, which undergoes a full SE(3) transformation. We

attribute the single failure case to a large error from Diff-EDFs

that exceeded the noise level applied during training.

The result of EquiContact for the full pick-and-place task

is summarized in Table II. The EquiContact also demonstrates

a near-perfect success rate in the full pick-and-place pipeline

for peg-in-hole tasks.

C. Validating Feasibility to Other Contact-rich Tasks

To further validate the EquiContact framework, we test it on

two additional contact-rich tasks: screwing and surface wiping

(see Fig. 6). In the screwing task, the robot aligns and screws

a peg; in the wiping task, it erases a line from a whiteboard.

In this experiment, we assume that the reference frames are

known. The reference frame for screwing is the end-effector

pose at full insertion; for wiping, it is the center of the board.

As in the PiH setup, demonstrations are collected on a fixed

platform and evaluated on out-of-distribution configurations,

including tilted platforms. Results in Table III show consistent

success rates across all conditions, confirming EquiContact’s

feasibility for various contact-rich tasks.

D. Results on Extreme Transformation Cases

We test the EquiContact method on the extreme transformed

configuration for each task. The results are summarized in

Table IV. As described in Fig. 5, extreme task transformation

cases have different camera inputs, e.g., unseen background

objects and light & shadow variations. Therefore, the require-

ment for invariant visual features becomes more stringent, and

a robust vision encoder is needed.

The G-CompACT for the PiH task showed almost perfect

success rates on all extreme task transformations, validating

that a well-trained G-CompACT policy can handle arbitrary

task transformations.

For the surface wiping tasks, the trained G-CompACT

policy can handle the smallest angle perturbation 45◦, but

failed completely on the other cases. The failure mode is that

the robot is trying to track the slots of aluminum extrusion or

black cables, not the black lines on the whiteboard. This may

be because the prompts we provided for surface wiping include

the phrase “the black line.” In addition, the lack of a prominent

blue square mark on the target object might be the issue. In

order to overcome this, one might need to provide more diverse

visual distractors that are similar to the black lines, so that the

transformer can learn meaningful cross-attention between the



TABLE I: Success rates of the insertion policies in real-world experiments for the proposed and benchmark approaches. “In-Dist.” denotes
in-distribution data and “OOD” denotes out-of-distribution data. For the In-Dist. (in distribution) scenario, the initial pose of the end-effector
is randomized around the flat platform.

Methods Observation Action Test Scenario Success Rate

ACT w/o GAC [World Pose] [World Pose] Flat Platform (In-Dist.) 1 / 5

ACT w/ GAC [World Pose] [World Pose] Flat Platform (In-Dist.) 18 / 20

CompACT [World Pose, FT] [World Pose, Gains]
Flat Platform (In-Dist.) 19 / 20

Flat Platform (OOD) 0 / 10

EquiContact
[GCEV, FT] [Relative Pose, Gains]

Flat Platform (OOD) 20 / 20

(Place, Ours) Tilted Platform (30◦, OOD) 19 / 20

TABLE II: Success Rates of the proposed EquiContact for a full
pipeline of pick-and-place.

Test Scenario Success Rate Failure Cases

Flat Platform (OOD) 20 / 20 N/A
Tilted Platform (30◦, OOD) 19 / 20 1 Place

TABLE III: Success Rates of the G-CompACT for screwing and
surface wiping tasks. The evaluation is conducted with the ground-
truth reference frames.

Test Scenario Screwing Wiping

Flat Platform (OOD) 10 / 10 10 / 10
Tilted Platform (30◦, OOD) 9 / 10 10 / 10

TABLE IV: Success Rates of the G-CompACT for PiH, screwing, and
surface wiping tasks to extreme task transformations (See Fig. 3). The
evaluation is conducted with the ground-truth reference frames.

Testing Scenarios PiH Screwing Wiping

45◦ in y 10 / 10 4 / 10 10 / 10
90◦ in x 9 / 10 0 / 10 0 / 5
135◦ in x 10 / 10 2 / 10 0 / 5

vision and GCEV signals. We have not tried more than 5 trials,

as it consistently fails.

For the screwing task, we have relaxed the success condition

to insert and rotate by at least 20% due to vibration. Unlike

the flat platform and 30◦ platform cases, where the platforms

are tightly assembled on the optical table, the platforms for

extreme transformation cases are attached to the aluminum

extrusion cages, as in Fig. 3. However, as the aluminum

extrusion cages are cantilever beams fixed to the optical tables,

exerting forces in x and y directions on the end-effector frame

leads to high vibration, resulting in complete failures. Despite

the relaxed success criterion, the success rates of screwing

to these scenarios are significantly lower than those of mild

transformations. This is because the screwing task is much

more complicated than the PiH task, since it requires perfect

alignment to be inserted and progressed. Therefore, we might

need a more diverse and carefully curated dataset to finish the

task on these cases successfully.

E. Limitations and Future Work

Symmetry Braking: The most prominent failure case of

EquiContact is the symmetry braking, specifically, manipulator

singularities. When the robot is near singular, pose tracking

accuracy degrades because controllers sacrifice tracking to

avoid singularity, leading to poorly executed policy commands,

resulting in a distributional shift issue. Therefore, the testing

scenarios for extreme transformations are carefully selected so

that the singularities are not encountered during execution.

Lack of Dataset: Especially for the surface wiping and

screwing tasks, the overall quality of the policy could be

increased with a larger dataset of better quality. For the

surface wiping, the variations of the backgrounds need to be

increased, and for the screwing, the demonstration examples

with less force interaction are required. In the latter case,

a teleoperation device that provides force feedback, i.e., a

bilateral teleoperation [10] device, would be beneficial.

Generalization to Other Visuomotor Policies: We have

utilized an ACT-based visuomotor policy in our current work,

but our EquiContact framework can be generalized to diffusion

policy (DP) or flow-matching style.

Vision Encoders: We employed a language-guided visual

feature to realize a left-invariance. In fact, the left-invariant

vision encoder is closely related to the object-centric represen-

tation, such as slot attentions [11]. Moreover, although we have

used CLIP-RN50 as our vision backbone, newer versions of

vision-language models (VLMs) are available, such as SigLIP

[35]. Notably, recent works [12, 31] explored inducing 3D

equivariance from 2D images. We will investigate these works

of vision encoders to improve left-invariance for future work.

VI. CONCLUSION

In this work, we introduced EquiContact, a vision-to-

force equivariant policy for spatially generalizable contact-

rich tasks. By integrating a global reference frame estimator

(Diff-EDF) with a fully localized visuomotor servoing pol-

icy module (G-CompACT), we demonstrate how compliance,

localized policy, and induced equivariance can be unified to

enable the peg-in-hole (PiH) task, a representative contact-

rich precision task, under spatial perturbations. We proved

the SE(3) equivariance of the policy under assumptions on

point cloud and image observations, validated its effectiveness

through real-world experiments on PiH benchmarks, and its

feasibility towards screwing and surface wiping tasks. Com-

pared to benchmark methods, our approach generalizes to un-

seen platform positions and orientations while maintaining low

contact force and near-perfect success rates. Through extensive

benchmark studies, we highlighted the effectiveness of the

three principles – compliance, localized policy, and induced

equivariance – for achieving spatial generalizability in contact-

rich manipulation. We conclude that these principles offer a



simple yet powerful design guideline for developing spatially

generalizable and interpretable robotic policies complementing

recent trends in end-to-end visuomotor learning and enabling

a structured divide-and-conquer approach.
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