EquiContact: A Hierarchical SE(3) Vision-to-Force Equivariant
Policy for Spatially Generalizable Contact-rich Tasks

Joohwan Seo*, Arvind Kruthiventy”, Soomi Lee*, Megan Teng*, Seoyeon Choi*, Xiang Zhang*,
Jongeun Choi' and Roberto Horowitz *
*University of California, Berkeley, Yonsei University
E-mails: {joohwan_seo, arvindkruthiventy, soomi_lee,
meganteng, xiang_zhang_98, seoyeon99, horowitz}@berkeley.edu
, Jongeunchoi@yonsei.ac.kr

PCD

Task Description:
“Putting a peg into the hole”

| SjowerLoop Wrist Cam RGB (1,,)
: (30Hz) Force/Torque (F,)
: Reference i

Frames

Diffusion-EDF
(CEE =
Frame
Estimator)

State Feedback

Compliant
Motion Command

CLIP Text
Encoder

G-CompACT
Relative Poses (g,-01)

Admittance Gains (K,,Kz)

Admittance '

I

1

1 ;

1 Geometric 1]
1

I Control i
1

Training of G-CompACT:
Data collected only on fixed platform pose

Evaluation on spatially unseen
scenarios with reference frame

1
|
1 (1) Translation

1 (2) Translation and Rotation
|

1

1

(3) Extreme Transformation

Fig. 1: We propose an EquiContact, a hierarchical, provably SE(3) vision-to-force equivariant policy for spatially generalizable contact-rich
tasks. (Left) The proposed EquiContact consists of a Diffusion-Equivariant Descriptor Field (Diff-EDF) and a Geometric Compliant Action
Chunking Transformer (G-CompACT). The Diff-EDF, the high-level planner, first processes the scene point cloud to produce reference
frames for pick-and-place tasks for the G-CompACT to anchor on. With the provided reference frames, the G-CompACT outputs the relative
pose and admittance gains from real-time wrist cameras and proprioceptive feedback. The output relative pose and admittance gains are
then fed to geometric admittance control (GAC) that provides compliant motion command to the robot. (Right) The G-CompACT method
is trained only on the fixed task configuration, but it can be generalized to task configurations that undergo arbitrary SFE(3) transformation,

given the reference frames.

Abstract—This paper presents a framework for learning vision-
based robotic policies for contact-rich manipulation tasks that
generalize spatially across task configurations. We focus on
achieving robust spatial generalization of the policy for the
contact-rich tasks trained from a small number of demonstra-
tions. We propose EquiContact, a hierarchical policy composed
of a high-level vision planner (Diffusion Equivariant Descriptor
Field, Diff-EDF) and a novel low-level compliant visuomotor
policy (Geometric Compliant Action Chunking Transformers,
G-CompACT). G-CompACT operates using only localized ob-
servations (geometrically consistent error vectors (GCEYV), force-
torque readings, and wrist-mounted RGB images) and produces
actions defined in the end-effector frame. Through these design
choices, we show that the entire EquiContact pipeline is SFE(3)-
equivariant, from perception to force control. We also outline
three key components for spatially generalizable contact-rich
policies: compliance, localized policies, and induced equivariance.
Real-world experiments on peg-in-hole (PiH), screwing, and
surface wiping tasks demonstrate a near-perfect success rate and
robust generalization to unseen spatial configurations, validating
the proposed framework and principles. The experimental videos
will be attached as supplementary material, and the codes will

be released.

I. INTRODUCTION

Imitation learning has recently shown significant success
in expanding the capabilities of machine learning in real-
world robotics applications [13, 1]. In the early stages of
robot learning, many methods formulated manipulation as
sequences of keyframe-based pick-and-place actions [34, 24].
More works have started to produce a continuous set of actions
directly from vision inputs [4, 37, 23]. Similar to the trend
seen in large language models (LLMs), there is a growing
belief that large-scale data can unlock generalizable, vision-
based policies for robotics [9]. This has led to massive efforts
to build large datasets [13] for training policies with general
knowledge.

However, such policies often lack spatial generalizability
and therefore require a large amount of data to learn ro-
bust behaviors. As described in [30], both action chunking



transformers (ACT) [37] and diffusion policy (DP) [4] are
evaluated only within the limited spatial variations. Further-
more, both methods exhibit near-linear performance growth
as the demonstration dataset size increases, suggesting that
the trained policies do not inherently generalize well to new
spatial configurations, but rather tend to interpolate between
seen demonstrations.

An alternative line of recent research focuses on leverag-
ing symmetry—particularly equivariance—to enhance spatial
generalizability, thereby improving sample efficiency during
training [22, 19]. This approach requires less data but comes
with its own challenges. Equivariant neural networks, being of
a more specialized nature, are often not as well-developed and
are more computationally intensive than their non-equivariant
counterparts, making real-time and large-scale deployment
more difficult. As a result, it becomes more attractive for users
to use standard models trained with massive datasets in many
instances.

In [19], a SE(3)-equivariant gain-scheduling policy using
geometric impedance control (GIC) [20, 21] was proposed to
solve peg-in-hole (PiH) problems. Inspired by the view that
many manipulation tasks can be framed as pick-and-place
problems [24], we modeled PiH as a compliant pick-and-
place task, where final peg poses are provided by vision-based
S E(3)-equivariant models such as Diffusion-EDF (Diff-EDF)
[18]. Since both the high-level planner and low-level variable
impedance controller are equivariant, they can be combined to
form a vision-to-force equivariant policy. However, in practice,
Diff-EDF’s placement accuracy proved insufficient for pre-
cision tasks, which require sub-millimeter precision (details
provided in Appendix AIII-A. This revealed a key limita-
tion: high-level vision planners may capture global structures
but struggle with precision and contact-sensitive execution.
Henceforth, we introduce an intermediate layer between the
planner and the low-level controller, which provides real-time
visual feedback to correct the residual errors of the high-level
planner.

In this paper, we propose EquiContact, a hierarchical SE(3)
vision-to-force equivariant policy for spatially generalizable,
contact-rich tasks. It consists of two main components: a high-
level planner using Diffusion Equivariant Descriptor Fields
(Diff-EDF) [18], which estimates a local reference frame from
point clouds, and a low-level compliant visuomotor policy
based on Action Chunking Transformer (ACT) [37], which
we refer to as Geometric Compliant ACT (G-CompACT). A
key design feature of G-CompACT is that it only relies on
local information: the force-torque signal in the end-effector
frame, a geometrically consistent error vector (GCEV) [19],
and wrist camera inputs. The output of G-CompACT is the
relative desired pose and admittance gains, which are then
sent to the geometric admittance controller (GAC) module
to execute compliant control. Our contribution lies in the
framework design, not in specific model choices; for example,
Diff-EDF could be replaced by ET-SEED [26], or ACT by
other visuomotor policies.

The main contributions of this paper are as follows:

1) We propose EquiContact, a hierarchical, provably SFE(3)-
equivariant policy from point clouds and RGB inputs to
interaction forces for executing contact-rich tasks.

2) We identify three key principles for spatially generalizable
contact-rich manipulation: (1) left-invariant compliant
control action (via GAC [19]), (2) localized policy (left
invariance), and (3) induced equivariance. These enable
SE(3)-equivariant behavior without requiring explicitly
equivariant neural networks [22].

3) Under these principles, we present the necessary conditions
for SE(3) vision-to-force equivariant policy, and mathe-
matically prove the equivariance property of EquiContact.

4) We demonstrate that EquiContact achieves near-perfect
success rates and spatial generalizability when these con-
ditions are met in real robot experiments involving peg-in-
hole, screwing, and surface wiping tasks.

From these key principles, we propose a general framework
to enhance the spatial generalization and interpretability of
vision-based policies, namely, “anchoring localized policy on
globally estimated reference frame.” We emphasize that our
work provides complementary insights to recent trends in
robot learning [13, 9, 5, 1] that aim to build generalist policies
from large-scale demonstration datasets. Our principles pro-
vide structural guidelines for improving spatial generalizability
via SE(3) equivariance.

II. RELATED WORKS

Visuomotor Servoing Methods Recently, generative mod-
eling has become mainstream in realizing visuomotor servoing
policies. Particularly, there are two dominant methods for
visuomotor servoing: Action Chunking with Transformers
(ACT) [37] and Diffusion Policy (DP) [4]. ACT uses a
conditional variational autoencoder (CVAE) as its generative
model, whereas DP uses denoising diffusion. ACT and DP
have been extended to other approaches, including compliance
and force-reactive behaviors [8, 7, 32], as well as structural
improvements [14, 5, 29]. Our work is most closely related to
CompliantACT (CompACT) [8], which integrates compliant
control for visuomotor policies. We have significantly im-
proved CompACT by incorporating a provable SFE(3) equiv-
ariant structure.

Equivariant Methods Earlier equivariant approaches at-
tempted to handle manipulation tasks as an extension of pick-
and-place tasks, by leveraging SE(3) equivariance from point
clouds [25, 26, 18] or SO(2) equivariance [34] from top-down
views. Equivariant approaches have been extended to visuo-
motor policies, such as DP or flow matching, [6, 33], using
point clouds. [28, 27] proposed SO(2) equivariant visuomotor
policies using 2D images, not fully considering SE(3). In
contrast, our approach induces full SE(3) equivariance from
vision to control force without relying on explicitly equivariant
neural networks, but using structured observations and actions
via geometrical canonicalization. Furthermore, by integrating
with SE(3) equivariant control, we generalize beyond table-
top settings to contact-rich manipulation.
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Fig. 2: (Left) Overview of the workspace for the peg-in-hole assembly
task is presented. 2 external cameras with calibrated extrinsics and
2 wrists cameras are installed. The workspace shown is the Diff-
EDF workspace. (Right-Top) Peg and hole assembly with 1mm
of clearance. (Right-Bottom) Hole part with flat and tilted (30°)
platforms.

Manipulation in Object Frame Our induced SFE(3) equiv-
ariant approach relies on representing the visuomotor policy in
the end-effector frame. While recent works [3, 17, 36] define
policies in the target (object) frame, policy representation in
the end-effector frame offers improved fidelity and robustness.
This is because the estimated object frame can be noisy, and
the end-effector frame is reliably obtained via forward kine-
matics. Importantly, compared to [3, 17], we explicitly link
the choice of reference frame to the equivariance property, and
unlike [36], which only handles translational transformations,
our method can deal with full SFE(3) transformations of the
reference frame.

III. PROBLEM DEFINITION

In this paper, we aim to identify the key structural compo-
nents required for learning policies that generalize spatially
in contact-rich manipulation tasks. We will first focus on
the peg-in-hole (PiH) problem as a representative force-based
assembly task and validate the feasibility of the proposed
approach to other contact-rich tasks later. Our proposed frame-
work achieves SF(3) vision-to-force equivariance through
three essential design principles: (1) left-invariant compliant
control, (2) localized policy, and (3) induced equivariance.
These principles are validated through specific data collection
and evaluation setups, as detailed below.

Unlike prior work [19] that assumes a known hole pose
and a pre-grasped peg, we consider a more general setup:
the robot must first grasp the peg and then perform insertion
using vision, proprioception, and task description in text, as
illustrated in Fig. 2. We assume the peg is upright and that
the hole’s yaw angle is known within 90° range. Given an
initial estimate, we resolve the orientation by selecting the
closest angle among the four symmetric candidates (e.g.,
1,1 +90°,1¢ + 180°,7 + 270°). As mentioned earlier, high-
level vision planners often lack the precision needed for tight-
tolerance tasks like PiH, which in our case requires < lmm
accuracy.

To accommodate this, we propose a low-level compliant
policy that:

« provides real-time visual feedback to refine the coarse high-
level command,

Fig. 3: Extreme task transformations. (Left) 90° transformation
in x axis. (Middle) 135° transformation in z axis. (Right) 45°
transformation in y axis, facing towards the camera.

o handles fine force-based interactions through compliance,
« and achieves provable SF(3)-equivariance.

We assume that a high-level vision planner (e.g., Diff-EDF)
can generate approximate pick-and-place poses. Our focus is
on developing an equivariant compliant placing policy, i.e.,
insertion policy, using imitation learning. We further assume
the peg is approximately aligned with the gripper during
placement, since arbitrary peg poses introduce two challenges:
(1) imprecise grasps can lead to slippage during contact, and
(2) compensating for slippage requires continuous estimation
of the gripper-to-peg transformation, which is difficult to
achieve reliably in real time.

To train this policy, we collect expert demonstrations of
insertions on a fixed-platform setting with a known hole
location, where its objective is to train a policy that performs
nearly perfectly in the trained scenario. We then evaluate
benchmark and proposed methods, trained solely on these
limited demonstrations, across arbitrarily translated and ro-
tated test scenarios, thereby isolating and testing individual
components of our spatially generalizable contact-rich policy.
Further, we demonstrate that our proposed approach can adapt
to extreme task transformations as shown in Fig. 3.

Finally, the validity of the proposed EquiContact method is
shown in other contact-rich tasks, such as the screwing task
and surface-wiping tasks.

IV. SOLUTION APPROACH

We introduce the EquiContact framework in this Section.
The EquiContact framework integrates a high-level vision
planner (Diffusion Equivariant Descriptor Field, Diff-EDF)
with a low-level compliant visuomotor policy (Geometric
Compliant ACT, G-CompACT) and geometric admittance
control (GAC) at the lowest level. The Diff-EDF gets the
point cloud inputs from external cameras to generate refer-
ence frames. Based on the estimated reference frames, the
G-CompACT process the real-time proprioceptive and wrist
camera feedback to output desired poses and admittance gains.
In what follows, the GAC module outputs the geometrically
consistent compliant motion from desired poses and admit-
tance gains to enable equivariant force interaction. We first
focus on the insertion task, with extension to picking addressed
later in the paper.
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Conceptually, EquiContact follows a simple yet powerful
principle: “anchoring a localized policy on a globally
estimated reference frame.” In our framework, G-CompACT
serves as a fully localized low-level policy, operating solely
on observations defined in the current end-effector frame, and
actions defined in the end-effector frame — See Fig. 4. The
high-level planner, Diff-EDF, estimates the pose of the target
(e.g., hole) in the world (global) frame. At the inference,
the robot moves near the estimated reference frame, and G-
CompACT is activated to perform compliant motion using
only local feedback. Because the low-level policy does not
depend on absolute global inputs, it can transfer robustly to
unseen spatial configurations when the estimated reference
frame is provided. This divide-and-conquer design provides
a general framework for enhancing both spatial generalization
and policy interpretability for contact-rich, and more broadly,
general manipulation tasks. In the remainder of this section,
we formalize this spatial generalization property as SFE(3)
equivariance and show how EquiContact satisfies this by its
design choices.

A. Geometric Compliant control Action Chunking with Trans-
formers (G-CompACT)

G-CompACT is based on the Action Chunking with Trans-
former (ACT), which is a CVAE-based generative model
designed for imitation learning in robotic manipulation tasks
[37]. To make G-CompACT spatially equivariant, we follow
the principles proposed in [19]:

o Left-invariant policy, and

« Policy representation in the end-effector body frame

We have designed the G-CompACT architecture to achieve
this properties as described in this chapter. The overall struc-
ture of the G-CompACT is also summarized in Fig. 4. The
observations are given by, (1) Geometrically Consistent Error
Vector (GCEV) e, proposed in [19], (2) FT sensor in the end-
effector frame F. to capture contact behaviors, and (3) RGB
images I, = {I1, w2} from wrist cameras (see Fig. 5).
For actions, we choose (1) relative pose from the current end-
effector frame g,.;, and (2) admittance gains for Geometric

Admittance Control (GAC) (K, Kr). The details of GAC and
the definition of gains will be provided later in the Section.
Formally, the G-CompACT method 7y can be written as:
a(k) = mo(o(k)),
a’<k) = (gT€l7KP7KR)(k)7 O(k) £ (6G7F€7Iw)(k)7
where a(k) denotes the actions, and o(k) denotes the obser-
vation at time step k. Although the G-CompACT outputs the
actions of chunk size N, we will only consider the single-step
action after proper processing, such as a temporal ensemble,

for notational compactness. The GCEV e, (g, gres) € RS is
defined as

where

(D

R™(p—p,
eG(gagref): (RTfI%(pR];’EJ;)pf)\/ P (2)

where ¢ = (p,R) € SE(3) is a current end-effector pose,
Gref = (Pres, Rrey) € SE(3) is the reference frame estimated
by the global estimator, e.g., Diff-EDF, and (-)¥ denotes the
vee-map, a mapping from so(3) (Lie algebra of SO(3)) to R3.
The physical meaning of GCEV is an error vector between the
current end-effector frame and the reference frame, defined
on the current end-effector frame. As will be elaborated in
Appendix Al the proprioceptive signals e, and [, are left-
invariant. For the details of GCEV e, we refer to [19, 20].

The images I, are fed to the transformer decoder D, after
being processed by the vision encoder structure fi4; therefore,
one can further represent G-CompACT as

a(k) = DUJ(eG s e, Z)(k) = D¢(ec s Fe, U(ﬁ(lw))(k)v (3
where z = 4 (1,,) is a visual feature from the vision encoder.
To satisfy the left-invariant condition of G-CompACT, the
features from the vision encoder z need to be invariant to
the left-transformation of the image. We formalize the left-
invariant visual feature condition as the following assumption.

Assumption 1 (Approximately Left-invariant Visual Features).
The visual encoder 14 produces features that are approxi-
mately left-invariant to task transformations, i.e.,

/14)(91 oly) =~ ﬂ(/)(lw)a 4)
Vg, € SE(3) that preserves local task geometry.

Here, ~ notation denotes invariance up to a bounded rep-
resentation error that does not affect the policy’s qualitative
behavior. Note that we refer to o as a group action [22]. The
left-group action applied to the wrist-camera images g; o [, is
illustrated in Fig. 5. The meaning of the visual representation
z being left-invariant is that the vision encoder 4 is trained
to focus only on group action invariant features, such as the
flat surface surrounding the hole on the platform. To satisfy
this assumption, we use language grounding to extract vision
features that are correlated with the language description. The
core insight behind this is that language tokens encode object
identity rather than pose, and thus provide a conditioning
signal that is invariant to global SE(3) transformations of the
scene. For example, a “peg” is still “peg” no matter from which
view it is seen.

Specifically, the pretrained CLIP-ResNet50 (CLIP-RN50)
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Fig. 5: Effects of the left group action ¢; to the end-effector pose g
and the reference frame g, s, and to the wrists cameras [,,,1 and Iy, 2.
As the left group action is applied to the end-effector and the target
object, the wrist cameras start to see the backgrounds of arbitrary lab
objects.

[16] is utilized for the vision encoder, and the CLIP text
encoder is also employed. Although the pretrained CLIP-
RN50 was used, it was fully retrained (details provided in
Appendix All); thereby, it served as a good initialization. We
provide the task descriptions to the text encoder to obtain text
tokens t4..¢. The vision feature z,,,, of CLIP-RN50 backbone
is then modulated using feature-wise linear modulation (FiLM,
[15]) layer from tc.; Via

z = B(ttezt)zraw + ’y(ttezt)a (5)

where $ and 7 are trainable FILM layer. Using FiLM, the
vision features are suppressed or highlighted to align with
task-relevant semantic concepts, empirically encouraging ap-
proximate left-invariance with respect to workspace transfor-
mations.

Under the satisfaction of Assumption 1, i.e., ideal left-
invariant vision feature condition, the following proposition
shows the left-invariance of the G-CompACT method in the
end-effector frame.

Proposition 1 (Left-invariance of G-CompACT under ideal
invariant visual features). Suppose Assumption 1 holds. Then
the G-CompACT policy 7y is left-invariant in the end-effector
frame, i.e.,

o (g1 0 o(k)) = mo(o(k)), (6)

The proof is presented in Appendix Al A remark is
provided.

Vg € SE(3).

Remark 1 (Implication of Proposition 1). Proposition 1
highlights a sufficient structural condition for spatial gen-
eralization: if the visual encoder and proprioceptive signals
can be made (approximately) left-invariant to SE(3) task
transformations, then the resulting closed-loop policy inherits
left-invariance by construction. This motivates learning or
enforcing representations that satisfy Assumption 1.

In what follows, we present an equivariant property of the
pose signal produced by G-CompACT when described in the
spatial frame.

Corollary 1 (SE(3) Equivariance of G-CompACT). The G-
CompACT my represented in the spatial frame satisfies the

following equivariance property:
(9194, Kp, Kr) (k) = mo(g1 © 0(k)).

The proof is presented in Appendix Al

)

B. Geometric Admittance Control (GAC)

We implement the geometric impedance control (GIC) pro-
posed in [20, 21] in the geometric admittance control (GAC)
setup [19]. Let the end-effector pose be denoted as g € SE(3)
in a homogeneous matrix representation, or simply g = (p, R),
where p € R? is a position of the end-effector and R € SO(3)
is a rotation matrix of the end-effector. The GAC operates with
the (ga, K, Kr) signal calculated from G-CompACT, where
the desired end-effector pose is calculated via g4 = ggrel-
Given g4 = (pa, Rq), the desired end-effector dynamics for
the GAC setup is written as follows:

va+KdVb+fG:F87 (8)

where M € RY*6 is symmetric positive definite desired inertia
matrix, K; € RO*6 symmetric positive definite damping
matrix, F, € RS is external wrench applied to the end-
effector in end-effector body frame and V? € R® is a
body-frame end-effector velocity. K; matrix is selected to
ensure overdamped system, as K4 = 3-blkdiag(\/K,, VKr).
Further, f, = f.(9,94,Kp, KRr) € RS is a elastic wrench
given by:

f, = [fp] _ { RT%iKpRggp—pd)

¢ \Ur (KrRj;R— R"R4KR)" |’
where K,, Kr € R3*3 symmetric being positive stiffness
matrices for the translational and rotational dynamics, respec-
tively. The desired end-effector pose command is calculated
using (8), which is then passed to the robot as the pose

command signal. For details on GIC/GAC, we refer readers
to [20, 19].

9)

C. Diffusion-Equivariant Descriptor Field (Diff-EDF)

Diffusion-Equivariant Descriptor Field (Diff-EDF) [18] is
an SF(3)-equivariant reference frame estimator for pick-and-
place tasks. In EquiContact, Diff-EDF serves as a high-level
vision module that provides a coarse target reference frame
for the downstream localized policy.

Given a scene point cloud O*°“™¢ and a gripper point cloud
O97e5P expressed in the end-effector frame, Diff-EDF outputs
an estimated target pose ¢,,, € SE(3):

Ippr = fo (O, 0974°F), (10)
Diff-EDF is designed to be left-equivariant with respect to
SE(3) transformations of the target object [18]. Let O™/ C

O#eene denote the subset of points corresponding to the object
of interest, e.g., hole assembly. Then, for any g; € SE(3),

fap(gl ° (97‘6]”7 Ograsp) =g - ﬂp((gref7 Ograsp). (11)
EquiContact relies only on the equivariance property of the
reference frame estimator; the specific architecture of Diff-

EDF is otherwise not essential and may be replaced by any
S E(3)-equivariant reference frame estimator. Importantly, the



localized policy G-CompACT is left-invariant by construction
and does not require an SFE(3)-equivariant estimator. In the
absence of an equivariant reference frame estimator, the overall
pipeline no longer guarantees end-to-end SF(3) equivariance;
still, the local equivariance of G-CompACT is preserved.

D. EquiContact

The proposed EquiContact method comprises the high-
level Diff-EDF and the low-level G-CompACT. In Proposi-
tion 2, we demonstrate that if an SFE(3) equivariant refer-
ence frame estimator, such as Diff-EDF, is used, then the
resulting EquiContact possesses the equivariance property. Let
EquiContact be written as he so that he (g, gref, Fe) — fg,
ie., ho : SE(3) x SE(3) x RS — RS,

Proposition 2. Suppose that the Assumption 1 holds. The
EquiContact policy he is equivariant if it is described relative
to the spatial frame.

The proof is shown in the Appendix Al

E. Extensions to Pick Tasks

So far, we have described our method in terms of the inser-
tion (placement) task. The proposed method can be extended
to pick tasks in the same manner. The Diff-EDF can be utilized
to obtain the pick reference frame, which is used for e, for the
picking G-CompACT. The picking G-CompACT is trained in
such a way that the manipulator grasps a peg in a fixed, aligned
pose, which helps EquiContact bypass the right-equivariance
issue. For G-CompACT, the FT sensor values are not utilized
as one of its observations, and it does not output the admittance
gains; instead, it uses fixed gains.

V. EXPERIMENTS AND DISCUSSIONS

We have conducted sets of experiments to validate the
proposed SFE(3) vision-to-force equivariance property of the
EquiContact. In particular, we aim to answer the following
research questions:

RQ1 What are the key principles for spatially generalizable
contact-rich manipulation tasks?

RQ2 Can the EquiContact framework be extended to general
contact-rich tasks other than the PiH task?

RQ3 Do our design choices of EquiContact really lead to
spatial generalization?

First, to answer RQ1, we compare the proposed EquiContact
against three baselines in the PiH task: ACT with world frame
observations and actions, executed with and without GAC, and
CompACT [8]. To answer RQ2, we have trained and tested
EquiContact with known reference frames on the screwing and
surface wiping tasks — See Fig. 6. Finally, to answer RQ3,
we have tested EquiContact with known reference frames on
the extreme transformation scenarios for all tasks as shown in
Fig. 3.

Before diving into the experimental results, we introduce the
implementation details for training and inference of EquiCon-
tact.

=

Fig. 6: (Left) Screwing task is first to align the peg to the hole and
screw-insert the peg. (Right) Surface wiping (erasing) task is to erase
the black marker lines with the eraser. The same platform structure
of the PiH is used.

A. Implementation details

Training: First, we note that the G-CompACT and Dift-
EDF are separately trained but executed in a single pipeline.

To train a G-CompACT, we collect expert demonstrations
via teleoperation at a fixed platform pose. We have collected
a dataset not only with a pure white background but also
with arbitrary visual distractors, so that the policy can learn
to reject background perturbations. We have provided 13-18
prompts for each task. The details regarding the gain modes,
language prompts, and scene randomization are provided in
Appendix All.

Since we know the platform’s fixed pose a priori during
training, e.g., a ground-truth reference frame, the GCEV vector
can be computed. Nevertheless, the reference frame needs to
be estimated via Diff-EDF (as g,,,) during the inference
stage, which may have non-negligible errors. To handle this
issue, we have added noise to the reference frame g,.y to
calculate e during dataset preprocessing. This provides the
model with an inductive bias to primarily rely on e, values for
rough alignment and rely on vision feedback for fine-grained
motion. The rest of the training follows the standard imitation
learning pipeline.

To train Diff-EDF, the scene and grasp point clouds are
collected together with the target reference frames, which
represent the desired poses of the end-effector for pick-and-
place operations. 20 demonstrations were collected for the
Diff-EDF: 10 samples of the flat platform and 10 samples
of the tilted platform, both translationally and rotationally
randomized. The training process of Diff-EDF follows the
procedure in [18].

Inference: We have implemented the EquiContact pipeline
using the ROS2 framework. First, the scene point clouds
are obtained and processed by Diff-EDF, producing reference
frames for pick-and-place. Using these reference frames, the
robot first moves near them, and the G-CompACT is activated
near the target objects. During inference, we first obtain the
task tokens from the previously used 13 — 18 task prompts and
feed the mean value of these tokens to the policy. The overall
pipeline of the EquiContact is presented in Fig. 1, and also
summarized in Algorithm. 1 in the Appendix. Please refer to
the Appendix AIl for in-depth implementation details.
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Fig. 7: Force profiles of CompACT and ACT with GAC (fixed gains)
during insertion tasks are presented. The CompACT with force-torque
sensor inputs and output gains shows lower interaction force in all
directions.

B. Peg-in-Hole Benchmark Results

Table. I summarizes the observation/action representations
used in each method and reports the benchmark results across
all setups.

1) Demonstration of Compliance: As the importance of
left-invariant compliant control action has already been ver-
ified in [19], we focus on verifying the necessity of compliant
control action. We begin by evaluating the role of compliance
using the same ACT model architecture, executed with and
without the Geometric Admittance Control (GAC). Results for
this comparison are shown in the 1°' and 2" rows of Table 1.
Without GAC, the ACT model shows significantly lower
success rates. The failure mode of the ACT w/o GAC involves
collision: as the robot approaches the platform, excessive
contact forces trigger safety shutdowns, preventing the task
from completing. Due to the safety issue, we limited the
number of trials without GAC to 5. This result demonstrates
that compliant control is nearly a deciding factor between
success and failure in contact-rich tasks.

The advantage of variable-compliant gain is that one can
achieve the desired force interaction behavior through ad-
mittance gains. To show this, we compare ACT with GAC
and CompACT under in-distribution (In-Dist.) flat platform
settings. Although both methods achieve near-perfect success
rates, their force profiles during insertion differ substantially.
As shown in Fig. 7, CompACT, which outputs task-adaptive
admittance gains based on force-torque feedback, consistently
produces lower interaction forces, especially in the z-direction.
Note that during the data collection, we modulate the gains
to reduce the force interaction in the z-direction but do not
consider the magnitudes of torques. As a result, CompACT
showed higher interaction torque throughout the task. The
effectiveness of the CompACT compared to the baseline ACT
was already presented in [8].

2) Demonstration of Equivariance: Although the Com-
PACT succeeds in insertion tasks in trained scenarios without
excessive force exertion, it fails to generalize to spatially
unseen configurations. This is expected, as its observation
and action representations are defined in the global spatial

frame, which neither guarantees nor encourages equivariance.
The result of applying CompACT to the translationally unseen
cases is shown in the Table I 3" row - Flat Platform (OOD).
Note that only a flat platform is used, meaning it is randomized
only translationally. We tested for 10 cases and did not conduct
more tests because it resulted in a 0% success rate.

In contrast, the proposed method (EquiContact) achieves
perfect success rates on the translationally unseen flat platform,
as can be seen in the 4" row of Table I. As shown in
Section IV, EquiContact has SFE(3) vision-to-force equivari-
ance, achieving a near-perfect success rate, even on the tilted
platform, which undergoes a full SE(3) transformation. We
attribute the single failure case to a large error from Diff-EDFs
that exceeded the noise level applied during training.

The result of EquiContact for the full pick-and-place task
is summarized in Table II. The EquiContact also demonstrates
a near-perfect success rate in the full pick-and-place pipeline
for peg-in-hole tasks.

C. Validating Feasibility to Other Contact-rich Tasks

To further validate the EquiContact framework, we test it on
two additional contact-rich tasks: screwing and surface wiping
(see Fig. 6). In the screwing task, the robot aligns and screws
a peg; in the wiping task, it erases a line from a whiteboard.
In this experiment, we assume that the reference frames are
known. The reference frame for screwing is the end-effector
pose at full insertion; for wiping, it is the center of the board.
As in the PiH setup, demonstrations are collected on a fixed
platform and evaluated on out-of-distribution configurations,
including tilted platforms. Results in Table III show consistent
success rates across all conditions, confirming EquiContact’s
feasibility for various contact-rich tasks.

D. Results on Extreme Transformation Cases

We test the EquiContact method on the extreme transformed
configuration for each task. The results are summarized in
Table IV. As described in Fig. 5, extreme task transformation
cases have different camera inputs, e.g., unseen background
objects and light & shadow variations. Therefore, the require-
ment for invariant visual features becomes more stringent, and
a robust vision encoder is needed.

The G-CompACT for the PiH task showed almost perfect
success rates on all extreme task transformations, validating
that a well-trained G-CompACT policy can handle arbitrary
task transformations.

For the surface wiping tasks, the trained G-CompACT
policy can handle the smallest angle perturbation 45°, but
failed completely on the other cases. The failure mode is that
the robot is trying to track the slots of aluminum extrusion or
black cables, not the black lines on the whiteboard. This may
be because the prompts we provided for surface wiping include
the phrase “the black line.” In addition, the lack of a prominent
blue square mark on the target object might be the issue. In
order to overcome this, one might need to provide more diverse
visual distractors that are similar to the black lines, so that the
transformer can learn meaningful cross-attention between the



TABLE I: Success rates of the insertion policies in real-world experiments for the proposed and benchmark approaches. “In-Dist.” denotes
in-distribution data and “OOD” denotes out-of-distribution data. For the In-Dist. (in distribution) scenario, the initial pose of the end-effector

is randomized around the flat platform.

Methods Observation Action Test Scenario Success Rate
ACT w/o GAC [World Pose] [World Pose] Flat Platform (In-Dist.) 1/5
ACT w/ GAC [World Pose] [World Pose] Flat Platform (In-Dist.) 18 /720
. Flat Platform (In-Dist.) 19720

CompACT World P , FT World P , G

omp [World Pose, FT] [World Pose, Gains] Flat Platform (OOD) 0710
EquiContact ) ) Flat Platform (OOD) 20 /20

GCEV, FT Relat P , G )

(Place, Ours) [ ] [Relative Pose, Gains] Tilted Platform (30°, OOD) 19720

TABLE II: Success Rates of the proposed EquiContact for a full
pipeline of pick-and-place.

Failure Cases

N/A
1 Place

Success Rate

20/20
19720

Test Scenario

Flat Platform (OOD)
Tilted Platform (30°, OOD)

TABLE III: Success Rates of the G-CompACT for screwing and
surface wiping tasks. The evaluation is conducted with the ground-
truth reference frames.

Test Scenario Screwing Wiping
Flat Platform (OOD) 10/ 10 10/ 10
Tilted Platform (30°, OOD) 9710 10/ 10

TABLE IV: Success Rates of the G-CompACT for PiH, screwing, and
surface wiping tasks to extreme task transformations (See Fig. 3). The
evaluation is conducted with the ground-truth reference frames.

Testing Scenarios PiH Screwing Wiping
45° iny 10/ 10 4710 10/ 10
90° in x 9710 0/10 0/5
135° in z 10/ 10 2/10 0/5

vision and GCEV signals. We have not tried more than 5 trials,
as it consistently fails.

For the screwing task, we have relaxed the success condition
to insert and rotate by at least 20% due to vibration. Unlike
the flat platform and 30° platform cases, where the platforms
are tightly assembled on the optical table, the platforms for
extreme transformation cases are attached to the aluminum
extrusion cages, as in Fig. 3. However, as the aluminum
extrusion cages are cantilever beams fixed to the optical tables,
exerting forces in z and y directions on the end-effector frame
leads to high vibration, resulting in complete failures. Despite
the relaxed success criterion, the success rates of screwing
to these scenarios are significantly lower than those of mild
transformations. This is because the screwing task is much
more complicated than the PiH task, since it requires perfect
alignment to be inserted and progressed. Therefore, we might
need a more diverse and carefully curated dataset to finish the
task on these cases successfully.

E. Limitations and Future Work

Symmetry Braking: The most prominent failure case of
EquiContact is the symmetry braking, specifically, manipulator
singularities. When the robot is near singular, pose tracking
accuracy degrades because controllers sacrifice tracking to
avoid singularity, leading to poorly executed policy commands,

resulting in a distributional shift issue. Therefore, the testing
scenarios for extreme transformations are carefully selected so
that the singularities are not encountered during execution.

Lack of Dataset: Especially for the surface wiping and
screwing tasks, the overall quality of the policy could be
increased with a larger dataset of better quality. For the
surface wiping, the variations of the backgrounds need to be
increased, and for the screwing, the demonstration examples
with less force interaction are required. In the latter case,
a teleoperation device that provides force feedback, i.e., a
bilateral teleoperation [10] device, would be beneficial.

Generalization to Other Visuomotor Policies: We have
utilized an ACT-based visuomotor policy in our current work,
but our EquiContact framework can be generalized to diffusion
policy (DP) or flow-matching style.

Vision Encoders: We employed a language-guided visual
feature to realize a left-invariance. In fact, the left-invariant
vision encoder is closely related to the object-centric represen-
tation, such as slot attentions [11]. Moreover, although we have
used CLIP-RNS50 as our vision backbone, newer versions of
vision-language models (VLMs) are available, such as SigL.IP
[35]. Notably, recent works [12, 31] explored inducing 3D
equivariance from 2D images. We will investigate these works
of vision encoders to improve left-invariance for future work.

VI. CONCLUSION

In this work, we introduced EquiContact, a vision-to-
force equivariant policy for spatially generalizable contact-
rich tasks. By integrating a global reference frame estimator
(Diff-EDF) with a fully localized visuomotor servoing pol-
icy module (G-CompACT), we demonstrate how compliance,
localized policy, and induced equivariance can be unified to
enable the peg-in-hole (PiH) task, a representative contact-
rich precision task, under spatial perturbations. We proved
the SE(3) equivariance of the policy under assumptions on
point cloud and image observations, validated its effectiveness
through real-world experiments on PiH benchmarks, and its
feasibility towards screwing and surface wiping tasks. Com-
pared to benchmark methods, our approach generalizes to un-
seen platform positions and orientations while maintaining low
contact force and near-perfect success rates. Through extensive
benchmark studies, we highlighted the effectiveness of the
three principles — compliance, localized policy, and induced
equivariance — for achieving spatial generalizability in contact-
rich manipulation. We conclude that these principles offer a



simple yet powerful design guideline for developing spatially
generalizable and interpretable robotic policies complementing
recent trends in end-to-end visuomotor learning and enabling
a structured divide-and-conquer approach.
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